THE
MACHINE

LANGUAGE

I|I ViU CaM COLINT O

' US '
{ ; r‘E '.II

THE MACHINE LANGUAGE BOOK
FOR THE COMMODORE 64

By: Lothar Englisch

Abacus [

P.0. BOX 7211 GRAND RAPIDS, MICH. 49510

Second Printing, October 1984
Printed in U.S.A. Translated by Greg Dykema
Copyright (C)1983 Data Becker GmbH
Merowingerstr. 30
4000 Dusseldorf W. Germany
Copyright (C)1984 Abacus Software
P.O. Box 7211
Grand Rapids, MI 49510

This book is copyrighted. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical,
photycopying, recording, or otherwise, without the prior
permission of Data Becker, GmbH or ABACUS Software, Inc.

ISBN 0-916439-02-X

PREFACE

Programming in machine and assembly language is one of those
things that everyone would like to be able to do. Machine
laﬁguage is extremely fast and versatile. Many people try to
learn it, but most quickly give it up because it is too

complicated. Only a few actually use it.

With this book we want to make it possible for thousands of
Commodore 64 users to use machine language. We have enlisted
the services of Lothar Englisch as author for this purpose.
Not only has he worked on many of our other books, but he is
also well acquainted with the Commodore operating systems
and programming for all models of the Commodore computers in

both machine language and assembler,

To get the most out of machine language programming, you
must concentrate on the following chapters. We think that

you will be rewarded in the end.

Have fun with this book and much success with your own

machine language programs.

4.

6.
7.

9.

10.
11.
12,

Table of Contents

INtrodUCtioN.eseeecesssssceosscscescccsssssccsccscccsonncel
The 6510 MiCrOprOCESSOY.ceeeecceccossscsscccscssosoccced

Instructions and Addressing Modes of the 6510¢.cceceeel?
A. The Load instructionS.eeccsccssccsscscscsccscccscsossl8
B. The Store insStructionNS..eeesssssssccscsscccscssses30
C. The Transfer instructionS...cceceeccccccscccscscsee32
D. The Arithmetic instructionS..ceccecccccscscccscscses3d
E. The Logical instructionS....ececcccccccoscccsccseed2
F. The Compare instructionS..eecccccccccccsssccosscsssdd
G. The Conditional branching instructionS.cecsecseecses54
H. The Jump insStructionS...cececccccccccscsccenccnsssbl
I. The Increment and Decrement instructionS.cccscececss62
J. The Flag manipulation instructionS...c.ccccecsececss66
K. The Shift instructionS..cccsscccscscccscssccccscsseb8

L. The Subroutine instructionS....ccceceeccccccccccesl3
M. The Stack instructionS.cecececccccecscsccccccsooeal?
N. The Interrupt handling instructionS..ccecececcececee?9
Entering Machine Language ProgramS...ccccecsssssscscee8l
The ASSEmMDler.ieesseccocsoocsccsccccsscccssssscsssssseal?
A Single-Step Simulator for the 6510.ccccesccccescessll5
Machine Language Programs on the Commodore 64........139
Extending BASIC.cesssssesseccsccscscsoscnsssssssoscsssesl?3
Input and Output RoutineS..eeeeececescesssecssassasssssslBd
BASIC Loader PrOgraMS.e.ssseesseccssscssccssccsssosssesesld2

6510 DiSasSSemMbler.icceeceececscsscssscssccscsssscsssceseld

Using a Machine Language MONitOr...eeeceeescoccscsesse200

Appendix A. Addressing Modes and Operation codeS........208

Appendix B. Groups Of INStructionS.ceceecccecessccccscscesea209

Appendix C. Conversion Tables Decimal - Hex - Binary...210

Appendix D. Table of 6510 Instruction CodeS..cesececsecees2l3

Appendix E. Operation codes and Flag SettingS.ceeccecese214

Appendix F., Ordering Instructions

for Optional Program Diskette...216

The Machine Language Book of the Commodore 64

1. INTRODUCTION

Why use machine language? -- Advantages and disadvantages of

programming in machine language

Today, when you purchase a home or personal computer such as
the Commodore 64, you have the BASIC programming language
available as soon as you turn your computer on, With BASIC
you can perform almost all of the tasks needed in home
computing. It is easy to legrn to program in BASIC. Why
then, should you bother with machine language? Isn't it just

a relic from the Dark Ages of computing?

Let's compare BASIC to machine language.

Most of us have mastered BASIC and know that it's not very
difficult to learn, In this book we'll try to convince you
that programming in machine language is almost as easy to
learn. If you already know BASIC, then you have a headstart.

The fundamentals of programming in machine language are not

much different.

What advantages over BASIC justify that you learn a new

programming language?

Your Commodore 64 comes with the BASIC programming language

built-in., BASIC is an acronym for Beginner's All Purpose

The Machine Language Book of the Commodore 64

Symbolic Instruction Code and despite its ease of mastery,

it is quite capable of performing most home computing tasks.

BASIC is a high level programming languages like FORTRAN,
Pascal, and COBOL. These languages are often called problem-
oriented languages because they are intended to be used for
solving problems in various fields such as mathematics,
science or business. The counterpart of problem-oriented
languages are the machine-oriented languages such as FORTH,
and require a more detailed knowledge of the computer
hardware. Machine language is the extreme member of this

category of languages.

By itself, the Commodore 64 cannot understand BASIC at all.
How can it execute the BASIC commands that you type in at
the keyboard if it doesn't speak BASIC? The Commodore 64
contains an "operating system" which includes a BASIC
interpreter. This interpreter converses with you in BASIC.
The Commodore 64 converts the BASIC commands and statements
into a series of executable machine language instructions.
You don't even see this happening. It takes place

"automatically".

Let's take a look at a simple example of how the BASIC

interpreter works:

PRINT "HELLO"

The Machine Language Book of the Commodore 64

When you enter this statement and press <RETURN>, the
interpreter reads the line character by character,

One of the jobs of the interpreter is to recognize the
commands (also called keywords) that make up the BASIC
language. When it finds the first word in the line (PRINT),
the interpreter looks in its command table to determine if
the word is a BASIC keyword. The command table contains all
of the BASIC keywords: GOTO, FOR, INPUT, PRINT, etc.
Associated with each BASIC keyword is the location of the
routine in the Commodore 64 operating system which performs
the actions required by that BASIC keyword. Below is a

simplified example of the command table:

BASIC MEMORY LOCATION WHICH
KEYWORD PERFORMS REQUIRED ACTIONS
GOTO 43168

IF 43304
INPUT 43967
PRINT 43680

If the interpreter finds the keyword in the command table,
it knows what part of the operating system is to carry out
that BASIC command. In our example, the interpreter searches
the command table for the word PRINT. It finds the keyword
and notes that the memory location which performs the PRINT
statement begins at location 43680. Therefore, the
interpreter lets the "program" segment (usually called a
routine or machine-language routine) located at 43680

perform the PRINT command,

The Machine Language Book of the Commodore 64

The routine at 43680 continues to read more of that same
line - also character by character. Next it finds a
quotation mark which tells PRINT routine that text follows.
According the the rules of BASIC, the Commodore 64 echos
onto the screen each of the next characters up to the ending
quotation mark. So the word HELLO appears on the screen. If
no additional characters appear on the line following the
ending quotation mark, the routine knows that its job is
complete and responds with READY. The BASIC interpreter is

now ready for another command.

This may appear very complicated and you may be telling
yourself that there must be an easier way. But this is
exactly the purpose of the BASIC interpreter -- to insulate
you from the drudgery and hard work of machine language. Why

then learn machine language?
Machine language is considerably faster than BASIC.

What speed advantages does machine language have over BASIC
and what accounts for this advantage? In order for your
computer understand BASIC, is has a BASIC interpreter which

recognizes and executes individual BASIC commands. The

interpreter itself is written in machine language.

To perform a simple BASIC command, the interpreter must do

several things. A simple BASIC statement is POKE 1024,10.

The Machine Language Book of the Commodore 64

The interpreter searches for the first word in the
statement; it finds the keyword POKE in its command table;
it knows to expect two érguments; it finds the first
argument 1024 and converts it to binary (remember that the
computer works in binary); it finds the second argument 10
and converts it to binary; it writes this second value into
the location specified by the first argument. This statement
takes about two milliseconds or 2 thousandths of a second to

perform,

How can you do the same task in machine language? You can

peform the same thing with two instructions:

LDA #10
STA 1024

These two instructions take six microseconds or 6 millionths

of a second. This is less than 1/300th the time as BASIC.

A machine language program is from 10 to 1000 times faster

than an equivalent program written in BASIC.

Some tasks such as sorting or calculating mathematical
formula are very time-consuming. If there are large amount
of data, these tasks may easily take hours to complete using
the BASIC language. Substituting a fast machine language

program would be welcome in such a situation.

The Machine Language Book of the Commodore 64

Some tasks cannot be performed using BASIC. An example is
attending to the "interrupts" that temporarily require the
Commodore 64 to stop what it's doing to see if the RUN/STOP
key is pressed. Servicing interrupts must be done by a

machine language routine.

This means that you cannot wutilize the full capabilities of
the Commodore 64 without machine language. This is
especially true for high resolution graphics and the music

synthesizer on the Commodore 64.

Another important point about machine language programming
is its use of memory. A well-written machine language
program may be ten times smaller than an equivalent BASIC
program. A 1K program written in BASIC is not very large;

but a 1K program written in machine language is large.

The same holds true for data storage. You can create and
maintain compact data structures in machine language that
are not possible in BASIC. For example, BASIC requires two
bytes to represent integer values between 0 and 255. In
machine language, you can represent integer values between 0
and 255 in one byte for each variable., Thus one-half of the
storage space for such values is wasted using BASIC. Machine
language lets you choose the most optimal data structure for

each problem.

To be fair, there are disadvantages to using machine

The Machine Language Book of the Commodore 64

language. First, you must learn how to program in machine
language. If you have already mastered BASIC, then you have
the fundamentals under your belt. But you also need some
tools that let you easily write and work with machine
language programs. This book contains the listings for

several such tools,

Another disadvantage of machine language is that these pro-
grams can run only on the model computers for which they are
written, and require substantial changes to run on a
different model, Most BASIC programs are more easily

transportable to other computers.

Testing machine language programs is another difficulty
unless you have the appropriate tools. We have included the
listing for a 6510 simulator program that not only teaches

you the machine language instructions but helps you find

errors in your programs.

Although machine language programming has some drawbacks,
many tasks cannot be solved without machine language and
many others require you to get the last bit of performance

from your computer.

After you have written your first machine language program,
you'll see that it isn't so difficult. We hope that you find
the lessons of this book helpful and that they inspire you

to solve your own computing problems in machine language.

The Machine Language Book of the Commodore 64

2. The 6510 Microprocessor

Before you begin programming in machine language, you need

to become acquainted with the processor itself. Let's

clarify some terms first. We'll begin with the construction

of the processor.

The 6510 microprocessor belongs to the family of 65xX

processors that are found in most Commodore computers. The

6510 processor contains a set of registers which are used by

all operations.
How can we describe the registers?

A microprocessor works digitally. It can only distinguish
between two conditions. We can think of these two conditions
like a switch which can be either on and off (or 1 and 0).
A single switch can have only two states. By itself a switch
is not very useful, so multiple switches are combined into

registers.

A single switch in the processor is called a bit (from
binary digit). A group of eight bits is called a byte. The
registers of the 6510 processor contains a‘group of eight

bits (or one byte) is arranged like this:
bit number 765432
011010

0 (power of 2)
contents 1

The Machine Language Book of the Commodore 64

The upper row illustrates the bit numbering convention that
is commonly used throughout this book. The bits are numbered
from zero to seven. Beneath each bit number are the contents
of the bits; either a 0 or a 1. While a bit can represent
two conditions (and therefore only two values), you can

represent a larger range with 8 bits.

Here's the numbering system that you are most familiar with
- the decimal system.

decimal position 3 (power of 10)
5

contents

These positions are also numbered, this time from zero to

three.

How do you calculate the value of this number?
Each digit has a value between zero and nine and the next
position has a value ten times greater., Starting from the

rightmost decimal position:

4*100 + 2%10l + 7%102 + 5%103
= 4 + 2%10 + 7%10%*10 + 5%10%10*10
= 4+ 2%10 + 7%¥100 + 5%1000

= 4 + 20 + 700 + 5000

n

5724

The Machine Language Book of the Commodore 64

Likewise, you can determine the contents of the registers
using the binary number system. They are called binary
numbers because each position allows two values instead of
ten., Accordingly, the next highest position is not ten times
greater, but only twice.the previous value. So you can

calculate the contents of the register:

1#20 4+ 0*21 4 0%22 4+ 1%23 4 o*24 4+ 1%25 4+ 1%26 4 x27

1*1 + 0*2 + 0*4 + 1*8 + 0*16 + 1*32 + 1*64 + 0*128

= 1 + 0 + 0 + 8 + 0 + 32 + 64 + 0

105

Thus the contents of the register in FIG 2.1 is 105. These
troublesome calculations can be simplified, if you first
calculate the value of each bit position., This is analagous

to memorizing the decimal positions.

A1l in
this Is equivalent
bit to this
position decimal value
0 20 =1
1 2l =2
2 22 =4
3 23 =3
4 24 = 16
5 25 = 32
6 26 = 64
7 27 = 128

10

The Machine Language Book of the Commodore 64

What is the maximum value of the register? If all of the bit

positions of the register have the value one, their sum

yields 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255, The
greatest value that can be represented in eight bits is 255.
So a total of 256 (0 thru 255) different values can be

represented in a register,

But binary numbers are tedious to manipulate., For this
reason, an alternative representation is introduced. It
requires fewer digits and is therefore more convenient to
use. If you divide an 8-bit binary number into two 4-bit
binary numbers, each 4-bit number can represent 16 different
values. If you construct a number system with 16 different
digits, then you can express each 8-bit binary number with

just two digits.

bit position 7654 3210

binary contents 0110 10001

hexadecimal contents 6 9-
FIG 2.3

The hexadecimal (base 16) numbering system uses 16 different
digits for this purpose. Each byte is divided into two half-
bytes, called nybbles. A nybble can have values from 0 to
15, but the decimal number system only has digits from 0 to
9. In the hexadecimal number system, the digits from 10 thru
15 are represented by the letters A thru F. The hexadecimal

digits are arranged like this:

11

The Machine Language Book of the Commodore 64

This Is equivalent And has
Binary to this this decimal
Nybble Hex digit value

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101. 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 A 10

1011, B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

For the example in FIG 2.3, the contents of the register
have a hexadecimal value 69. In order to distinguish between
the various number systems, you denote a hexadecimal number
with a preceding dollar sign $, and a binary number with a

preceding percent sign %.

Appendix C is a Decimal, Hexadecimal, Binary conversion

table. The remainder of this book uses hexadecimal numbers

most often, since it is easily representable and

convertable into the binary representation of the processor.

Now let's take a look at the microprocessor registers.

The 6510 has a total of six registers, five are eight-bit

registers and the sixth is a sixteen-bit register. Let's

12

The Machine Language Book of the Commodore 64

examine the registers individually.

The accumulator is the most important register in the
microprocessor. It is the universal working register, used
for almost all operations. All arithmetic and logicsal
operations, and almost all of the comparison instructions

use the accumulator.

The X-register is the second register in the processor. This
register is used together with the accumulator when working
with tables. It functions as the counter or pointer to the
individual table elements. For this reason this register is

also called an index register,

The Y-register is an index register like the X-register and

serves similar purposes.

The program counter is a 16-bit register. Its contents
indicate the memory location from which the next instruction
is to be executed. This register is managed by the
microprocessor itsglf. Normally, you do not have direct

control over the contents of this register.

The stack pointer points to an area of memory called the
stack which is used for subroutines and for short-term data

storage. The stack is described in detail later.

The processor status register gives information about the

13

The Machine Language Book of the Commodore 64

result of the last executed instruction., This register is
the foundation for the decision making and conditional
branching instructions. Seven of the eight bits of the
status register are used as flags. You can examine and
conditionally branch depending on the setting of a
particular flag. A flag can be either set (=1) or clear
(=0). The processor status register is made of the following

flags:

bit position
flag type

(IS,

[+ RN
Ow
Ll N
N

2z
<o
Qo

The letters are abbreviations for the names of the flags,

and have the following meanings:

C - Carry The carry flag contains the carry generated
by an addition, and is set if the result is greater
than 255 and therefore cannot be contained in eight

bits of the accumulator.

2 - Zero The zero flag is set if the result of an

operation is zero.

I - Interrupt Disable This flag determines if
interrupts are permitted in a program. This flag

does not interest us at the moment.

14

The Machine Language Book of the Commodore 64

D - Decimal The decimal flag determines if arithmetic

is carried out in the decimal mode.

B - Break The break flag indicates if execution was

halted by a BRK instruction.

V - overflow The V flag indicates overflow when

calculating with signed numbers.

N - Negative This flag is set if the result of an
operation results in a value greater than 127 (bit
7 is set). The designation negative comes from the
fact that values over $7F can be interpreted as

negative numbers.

A microprocessor must have a place to get data and store
data. The computer's memory serves this purpose. Memory is
divided into individual cells containing 8 bits each, the
same size as the accumulator and X and Y registers. In order
to access the memory, it must be possible to select a
specific memory location. This selection is called
addressing memory. We give each memory location a number or
address. With 8 bits, the microprocessor can address cells
from 0 to 255 for a total of 256 memory cells., This is far
too few for most applications. For this reason, the micro-

processor uses l6-bits for the address., With 16 bits, the

microprocessor can address 216 = 65536 memory locations.

15

The Machine Language Book of the Commodore 64

This is called a 16-bit address bus. To summarize - a) the
6510 microprocessor can address 65536 memory locations; b)
each memory location can contain a value from 0 to 255. For
ease of handling, 210 = 1024 bytes is called a kilobyte or
1K. Therefore, the processor can address 64*1024 = 65536 or

64K. This is the entire address range of the Commodore 64.

Now you can understand the significance of the program
counter. The program counter contains a 16-bit value. This
16-bit value is the address of the next instruction that the

microprocessor is to fetch from memory and execute,

An instruction for the microprocessor can be represented by
a value between 0 and 255. The 6510 microprocessor can have
a maximum of 256 different instructions. However, not all
the codes have a meaning‘on the 6510; fewer than 256
instructions exist, BASIC commands are naturally not

included.

16

The Machine Language Book of the Commodore 64

3. Instructions and Addressing Modes of the 6510

Of the 256 possible 8-bit codes, 151 are legal instructions
for the 6510. These include several similar instructions,
that are different only by addressing mode. There are only
56 entirely different instructions on the 6510. These

instructions are easy to learn. They are introduced to you

in groups.

An instruction is represented in the computer as an 8-bit
binary number. Each particular machine language instruction
has a specific binary value. The microprocessor knows what

actions to take based on this binary value.

Machine language instructions are given mnemonic-names. A
mnemonic is a three character abbreviation for a machine
language operation. For example, the mnemonic LDA stands for
LoaD Accumulator. These mnemonics will become more familiar

to you as we discuss them throughout the book.

Now let's take a look at the specific instructions:

17

The Machine Language Book of the Commodore 64

18

A. The LOAD instructions

The LOAD instructions get data from memory and place it

into a register. There are three working registers in the

processor (the accumulator, the X-register and the Y-

register). Each has a corresponding load instructions.
LDA LoaD Accumulator

LDX LoaD X register
LDY LoaD Y register

The 6510 processor has different addressing modes. An

addressing mode tells the 6510 how to calculate the

address (or location) of the operand.

In the examples that follow, we show you corresponding
"pseudo-BASIC" statements to illustrate the machine

langauge instructions in a familiar notation.

1) Immediate Addressing

LDA #10
This addressing mode is indicated by the pound sign
$# preceding the value to be loaded. Immediate
addressing means that the accumulator is loaded
with the value which follows it, in this case 10.

The corresponding pseudo-BASIC instruction is:

A=10

The Machine Language Book of the Commodore 64

This addressing mode is used to load a register
with a constant. It also works with the X and ¥

registers:

LDX #S$7F or LDY #0

Here the X-register is loaded with the value $7F
(127 in decimal) and the Y-register with the value

zero (0).

When using the immediate addressing mode, the value

to be loaded is part of the program. The
instruction and the value are placed one after the
other in two adjacent memory locations. For
example, if the machine language program is located
at address 1200, the program counter contains the
value 1200. The 6510 microprocessor gets the
intruction at 1200 and sees that its value is $A9
or decimal 169. It knows that the instruction is
LDA #. So it places the contents contained in the
next memory location 1201 into the accumulator (see
diagram which follows). Since this instruction
consists of two bytes - the instruction itself and
the value to be loaded - the processor
automatically increments the program counter by
two. The program counter then points to the next

instruction to be executed by the microprocessor

19

The Machine Language Book of the Commodore 64

20

starting at 1202,

! ! !
contents-=-> ! A9 !data !
! ! !

address---> 1200 1201 1202

2) Absolute Addressing

This addressing mode is used if a register is be
loaded with the contents of a particular memory
location. This is different from the immediate
addressing mode which loads the register with a

constant value.
LDA $COAF

Here the accumulator is loaded with the contents of
memory location $COAF. How is this instruction
represented in memory? The address $COAF is a 16~
bit number. A memory location can only hold 8 bits.
The solution is to divide the 16-bit address into
two 8-bit numbers. The following convention is used
for this - immediately following the instruction is
the least significant part of the address (low-
byte) and followed by the the mﬁst significant part
(high-~byte).

contents--> AD

! !
AF 1 CO !
! !

—— am

address---> 1200 1201 1202 1203

The Machine Language Book of the Commodore 64

In this example, the instruction code is $AD (173).
The absolute address follows: with the low-byte
first, $AF (175) and finally the high-byte $CO
(192). After the instruction is executed, the
program counter is incremented by three. The

corresponding instruction in pseudo-BASIC is:

A = PEEK(SCOAF)

This instruction also works with the X and Y
registers. The instruction or operation codes,
abbreviated to op codes, can be found in Appendix

A.

When executing absolute addressing mode instruc-
tions, the processor gets the low-byte and then the
high-byte of the address. The data found at that
address is placed into the accumulator, the program
counter is incremented by three and the next
instruction is fetched. These instructions require
three bytes, in contrast to the immediate

addressing mode which requires only two.

Now a quick look at the status register., Load
instructions affect the zero and negative flags. If
the value loaded has a value of zero, then the zero

flag is set; otherwise it is cleared. If the value

21

The Machine Language Book of the Commodore 64

22

loaded is negative (greater than $7F or 127

decimal), then the negative flag is set; otherwise

it is cleared.

3) Zero-page addressing

Another addressing mode is called the zero-page
addressing mode. This addressing mode can be used
if the address of the data is in memory locations
between 0 and SFF (255). This results in a two-byte
instruction in contrast to the three-byte instruc-
tion of the absolute addressing mode. Zero-page
addressing instructions occupy less memory and
execute faster. A disadvantage, of course, is that
the data must be located in addresses from 0 to

255.

Where did the term zero-page originate? You can
think of the 64K of memory as being divided into
256 pages, each containing 256 bytes. Thus memory

locations 0 thru 255 form page zero.

A zero-page load instruction looks like this:

LDA $73

The Machine Language Book of the Commodore 64

] !
contents--> { AS ! 73 1!
! !

address---> 1200 1201 1202

It is stored as a two-byte instruction: $A5 (165)

$73 (115). In pseudo-BASIC, this is:

A = PEEK($73)

4) Indexed Addressing
Another addressing mode is the indexed addressing
mode., Here the X and Y registers play important

roles.
LDA $25B8,X

This is called absolute addressing indexed by X.
How does it work? The processor 1loads the
accumulator not with the contents.of memory
location $25B8, Rather it first adds the value of
the X-register to the absolute address ($25B8). If
the X-register contains $35, for example, the

following calculation takes place:

$25B8 + $35 = $25ED

23

The Machine Language Book of the Commodore 64

24

The accumulator is loaded with the contents of

location $25ED. If this instruction is executed
with varying X-values, a different value is loaded
each time. This addressing mode is very useful for
programming loops and when working with tables.
Other examples are described later. In pseudo-

BASIC, this addressing mode can be formulated as

follows:

A = PEEK($25B8 + X)

Here X implies the contents of the X register,

contents-->

!
BD ! B8
!

N
wm
-t 0

address--~> 1200 1201 1202 1203

You can also use the Y-register in place of the X-

register for indexed addressing.

LDA $25B8,Y

Here the contents of the Y-register is added to the
absolute address $25B8 to obtain the final address.
Using both registers, you have two independent
index variables which can be used for programming

nested loops.

The Machine Language Book of the Commodore 64

5) Zero—-page indexed addressing

Indexed addressing can also be used together with
zero-page addressing, thereby carrying over the
advantages of =zero-page addressing to indexed
addressing. Note that this addressing mode works
with the X-register only. A typical instruction

might look like this:
LDA $BA,X

This results in a two-byte instruction.

! ! !
contents--> ! B5 ! BA !
! ! !

address---> 1200 1201 1202

6) Indirect Indexed Addressing

This addressing mode is not as easy to understand,
but permits very flexible programming -the indirect
indexed addressing mode. Using this addressing
mode, zero page plays an important role. With
indirect indexed addressing, two consecutive memory
locations in zero-page form a pointer to the actual

address, The first memory cell contains the low-

byte and the next contains the high-byte of the

25

The Machine Language Book of the Commodore 64

actual address. An example clarifies this.

Imagine that zero-page address $70 contains the
value $20, and address $71 contains the value $C8.
These two memory locations form a pointer to the
address $C820. Next the Y~-register also comes into
play in the indexing. If the Y-register contains
$B3 for example, it is added to $C820 to get an

effective address of $C8D3 as shown below:

LDA ($70),Y ($70) => $20 contents of $70
($71) => $C8 contents of $71
$C820 yields this address
(Y) => $B3 contents of Y reg.
$C8D3 sum of addr and Y reg.
> $4F contents at $C8D3

(sCc8D3)

After the instruction is executed, the the accumu-

lator contains $4F.

! !
contents--> ! B1 ! 70 !
1 1

address---> 1200 1201 1202
In pseudo-BASIC it looks like:

A = PEEK (PEEK($70) + 256 * PEEK(S$71) + Y)

26

The Machine Language Book of the Commodore 64

Indirect indexed addressing is indicated by placing
the operand in parentheses. This addressing mode is
very.efficient, because you can access the entire
memory with a two-byte instruction. This mode is
used for managing tables and loops. It is more
flexible than the simple indexed addressing,
because the entire memory range can be addressed,
not just the memory in a single page. Only the
contents of the two-byte pointer in the zero page

need be changed.

7) Indexed Indirect Addressing

Another addressing mode is the indexed indirect
address mode, in contrast to the above indirect
indexed addressing mode. It works with the X~
register instead of the Y-register. Here also the
address is formed from two consecutive zero-page
locations. When calculating the address, the index
is first added to the pointer and then the contents
are used as a pointer to the actual address. An

example:

LDA ($70,X) (X) => $08 contents of X register
$70 = $78 added to zero-page addr
=> ($78) = $40 contents of $78
($79) => $20 contents of $20
$2040 yields this address
($2040) => $A9 contents at $2040

27

The. Machine Language Book of the Commodore 64

28

The accumulator contains $A9 after the instruction

is executed.

! ! !
contents--> ! A1l ! 08 !
! ! !

address~---> 1200 1201 1202

In pseudo-BASIC it looks like this:
A = PEEK (PEEK($70 + X) + 256*PEEK($70 + X + 1))

First thé contents of the X-register is added to
the operand and the contents of the resulting
address is used a pointer to the actual address.
The indexed indirect address mode is seldom used in
contrast to the indirect indexed mode. You will
probably have little occasion to use this mode at

the beginning.

Here is a summary of the addressing modes and

operation codes:

Address mode LDA LDX LDY
immediate $A9 S$A2 $AO0 operation codes
absolute $SAD S$SAE S$AC
zero page SA5 $A6 S$A4
absolute X-indexed $BD - $BC

absolute Y-indexed $B9 S$BE -
zero-page X-indexed $B5 - $B4
zero-page Y-indexed - $B6 -
indirect indexed $B1 - -
indexed indirect $Al - -

‘The Machine ‘Language Book of the Commodore 64

“ The relative addressing mode and the accumulator

addressing mode are discussed later.

29

The Machine Language Book of the Commodore 64

30

B. The STORE Instructions
The counterparts of the load instructions are the store

instructions. Using these instructions we can place the
contents of a register into memory. The mnemonics for the

instructions are:

STA
STX
STY

The contents of the accumulator, X-register or-Y-register
are placed in the appropriate memory location, which is
specified by the operand that follows the instruction
code. The same addressing modes used for the load
instructions apply to these instructions except for the
immediate mode. Storing the contents of a register

changes neither the register nor the status flags.

Here are the operation codes and addressing modes:

Address mode STA STX STY
absolute $8D $B8E $8C operation codes

zero page $85. $86 $84
absolute X-indexed $9D -
absolute Y-indexed $99 - -

zero-page X-indexed $95 - $94
zero-page Y-indexed - $96 -
indirect indexed $91 - -
indexed indirect $81 - -

You should already be acquainted with the BASIC command
corresponding to the store instructions: the POKE

command. It writes the contents of a variable to a

The Machine Language Book of the Commodore 64

specified address in memory. In pseudo-BASIC, the

equivalents might look like this:

STA $8000 POKE $80A
STX $C020,Y POKE $C020+Y,X
STY $F1 POKE S$F1,Y

Store instructions are either two or three bytes in
length depending on the addressing mode used. The address
modes are the same as for the load instructions. The

flags are not affected by store instructions.

With the load and store instructions, you are now
acquainted with two important groups of instructions
which serve to communicate between the microprocessor and

1S
the memory.

31

The Machine Language Book of the Commodore 64

32

C. The Transfer Instructions

The 6510 microprocessor has instructions to copy the
contents of one register to another. You can, for
example, transfer the contents of the X-register into the
accumulator or vice versa. This is quite important
because many instructions only work with the accumulator.
After executing these instructions, the contents of the
source register are unchanged; the value is merely copied
into the destination register. The transfer instructions
within the processor require the participation of the
accumulator; a direct transfer from the X to Y register

or vice versa is not possible.

All transfer instructions are one-byte instructions; they

need no operand.

Below are the individual transfer instructions and the

pseudo-BASIC commands.,

TAX X =A
The contents of the accumulator is copied into the X
register. The 2 and N flags are affected, but the

original contents of the accumulator remain unchanged.

TXA A =X

The Machine Language Book of the Commodore 64

The contents of the X-register is copied into the

accumulator. The N and 2 flags are affected. The contents

of the X-register are unchanged.

TAY Y
TYA A

nou
>

These are the correspohding instructions for the Y-
register. They work exactly like the above instructions,

but substituting the Y-register for the X register.

The next two transfer instructions affect the stack
pointer. They are seldom used, although the stack pointer
is discussed later. The stack pointer can be exchanged

only with the X-register.

TSX X

SP

The contents of the stack pointer is placed into the X-

register. The Z and N flags are set according to the
value., The contents of the stack pointer remain unaltered

by this operation.

TXS SP = X

The contents of the X-register are placed into the stack
pointer. No flags are affected by this instruction. The

contents of the X-register are unaltered.

33

The Machine Language Book of the Commodore 64

All the transfer instructions are contained in this

table, along with their instruction codes.

Command Op code
TAX $AA
TXA $8A
TAY $SA8
TYA $98

. TSX $BA
TXS $9A

34

The Machine Language Book of the Commodore 64

D. The Arithmetic Instructions

As with most 8-bit microprocessors, the 6510 can perform
only two arithmetic operations - addition and
subtraction. Multiplication and division must be
implemented by the user. Each calculation requires two
operands which are combined to produce a result. For the
6510, the first operand is contained in the accumulator
and the second operand is obtained from memory. The
various addressing modes are used for this. The result of
the arithmetic operation is always left in the
accumulator, The comparisons with the corresponding

pseudo-BASIC commands makes this clearer.

First consider addition. The contents of the addressed
memory location are added to the accumulator and the

result is again placed back in the accumulator.

ADC #$3A A=A + $3A

If you add two 8-bit values (0 to 255), the result may
not be able to be represented by an 8-bit number. An
overflow may occur, Let's take a look at the binary

addition:

ADC #$3A; the accumulator contains $9E.

$10011110
$00111010

$9E
$3A

35

The Machine Language Book of the Commodore 64

The addition looks like this:

10011110 S9E
+ 00111010 +$3A

10111000 = $D8

Binary addition is carried out in the same manner as
decimal addition., Four different results are possible in

binary addition:

0+0=0
0+1=1
1+0=1
1+ 1=0plus overflow

A carry, as in decimal addition, is taken into account in
the next position. In our example, we get $10111000 or
$D8 as the answer. The result can be represented in eight

bits. Here is anotherbexample:
ADC #S$3A

The accumulator now contains $E4. The addition looks like

this:

11100100 SE4
+ 00111010 +$3A
100011110 = S$11E

Here the result overflows 8 bits;. the answer is

$100011110 or $11E. But the accumulator holds only an 8-

36

The Machine Language Book of the Commodore 64

bit number. So the carry flag is used to indicate an
overflow, After each addition, overfloﬁ is indicated by
the carry flag. If an overflow occurs, the carry flag is
set (to 1); if no overflow occurs, the carry flag is

cleared (to 0).

You can think of the carry flag as the ninth bit of the
accumulator. If you want to add numbers which cannot be
represented in 8-bits, multi- precision addition is used.
A 16-bit number (two 8-bit memory locations) can

represent numbers between 0 and 65535,

To add two 16-bit numbers, add the low-bytes of each
operand and then the high-bytes of each operand. If an
overflow occurs during the addition of the low-bytes,
the carry flag adjusts for this during the addition of
the high-bytes. Remember to clear the carry flag before
adding the low-bytes so that the previous contents of the
carry flag do not affect the addition. Here is an example
of adding two numbers NUM1 and NUM2 with the result being

placed in SUM:

CLC ;clear carry flag
LDA NUM1LOW ;low half of NUMI1
ADC NUM2LOW ;low half of NUM2
STA SUMLOW slow half of result
LDA NUM1HIGH ;high half of NUM1
ADC NUM2HIGH shigh half of NUM2
STA SUMHIGH ;high half of result

Now we can give the equivalent instruction in pseudo-

BASIC.

37

The Machine Language Book of the Commodore 64

38

ADC #$3A A=A+ $3A+C

Any overflow is indicated by the carry flag after each
addition. Besides the carry flag, the zero and negative
flags are also affected, depending on whether the result
is zero or the seventh bit is set. An additional flag,
the v flag, is used for signed arithmetic. The following
table contains the operation codes for the ADC

instruction in the various addressing modes.

Address mode ADC
immediate $69 operation codes
absolute $6D
zero page $65

absolute x-indexed $7D
absolute y-indexed $79
zero-page x-indexed $75
indirect indexed $71
indexed indirect $61

Subtraction is performed in much the same way as
addition. The contents of the addressed memory location
is subtracted from the accumulator and the result is left
in the accumulator. It is possible that the result cannot
be represented in 8-bits., With subtraction, an overflow
cannot occur, only an underflow. In this case, the result
is less than zero. The carry flag indicates this too,
Since overflow and underflow have opposite meanings,

underflow is indicated by carry flag being cleared. A

The Machine Language Book of the Commodore 64

carry flag being set means that no underflow has
occurred. Correspondingly, the carry flag must be set
prior to subtraction (or the first byte of multi-

precision subtraction). For example:

SEC ;set carry flag for subtraction
LDA VALl ;subtrahend

SBC VAL2 sminuend

BCC NEGATIVE j;carry clear means VAL2>VAL1
BCS NOTNEG jcarry set means VAL2<=VAL1l

In pseudo-BASIC we can formulate this as follows:
SBC #S$3A A = A - $3A - (1-C)

Binary subtraction is executed in a manner similar to
addition. There are four possible cases:

0-0=0
0-1=1 plus underflow
1-0=1
1-1=0

If the accumulator contains $7F, the binary

representation looks like this:

$TF $01111111
$3A $00111010

After setting the carry flag, the subtraction looks like

39

The Machine Language Book of the Commodore 64

40

01111111
- 00111010

01000101

The result is %01000101 or $45. Since no underflow
occurs, the carry flag is set again. The next example is
somewhat different., This time the accumulator contains

$1E and the carry flag is set.

S1E $00011110
$3A £00111010

The subtraction yields the following:

00011110
- 00111010

- s e e o e o s o

11100100

The result is $11100100 or $SE4. Because an underflow
occurred, the carry flag is cleared. How is this result
interpreted? Consider how we do subtractioﬁ using
decimal numbers. In decimal, our calculation is 30-58.
The answer is a negative number, -28, In this example,
the register contains $E4 or 228 (decimal). How are
these number related? If we subtract the result from 256,
so we get 28, The cleared carry flag after subtraction
tells us that the result must be interpreted as a

negative number.

The Machine Language Book -of the Commodore 64

Negative numbers are represented using two's complement
notation. To find the two's complement of a number,
invert all of the bits of the binary number and then add

one to this result.

11100100 original number
gives 00011011 invert each bit
+ 00000001 plus 1

00011100 gives two's complement

The result is %00011100 or $1C or 28 in‘decimal.

Note that the carry flag must be cleared before addition.
After addition, a set carry flag indicates an overflow.
The carry flag must be set before subtraction. After
subtraction, a clear carry flag indicates underflow and

the result is in two's complement representation.

This table contains the operation codes for the

addressing modes.

Address mode SBC
immediate $E9 operation code
absolute S$ED
zero page SE5

absolute x-indexed SFD
absolute y-indexed $F9
zero-page x-indexed $F5
indirect indexed SF1
indexed indirect SEl

41

The Machine Language Book of the Commodore 64

42

E. The logical instructions

The logical instructions combine two value with each
other, As with the arithmetic instructions, one operand
must be in the accumulator while the second is retrieved
from memory according to the addressing mode. After the
operation, the result is left in the accumulator. The
6510 can perform three different types of logical

operations.

The AND instruction

The AND operation compares each bit of the accumulator
with the corresponding bit in the operand. If the bit of
the accumulator AND the corresponding bit of the operand

are both set (to 1), the corresponding bit of the result

is also set to one,

0 AND 0 = 0
0 AND 1 =0
1 AND 0 = 0
1 AND 1 =1

The bit-wise comparison of the accumulator and operand

can be made clearer with an example.

AND #$37

The Machine Language Book of the Commodore 64

say, that the accumulator contains $5D. ANDing the

accumulator with $37 gives the following:

$5D 01011101
$37 00110111

$15 00010101

The result is %00010101 or $15. This corresponds exactly

to the pseudo-BASIC instruction AND:

A = A AND $37

In this case, A = $5D AND $37 or A = 93 AND 55. We get
the answer 21 or $15. The AND operation affects the N and
Z flags. A result of zero sets the 2 flag, while results

greater than $7F (127) set the N flag.

This table contains the operation codes for each addressing

Address mode AND
immediate $29 operation codes
absolute $2D
zero page $25

absolute x-indexed $3D
absolute y-indexed $39
zero-page x-indexed $35
indirect indexed $31
indexed indirect $21

43

The Machine Language Book of the Commodore 64

44

The OR instruction

The OR instruction compares each bit of the accumulator
with the corresponding bits of the operand. If a bit of
the accumulator OR a corresponding bit of the operand

equals 1, the corresponding bit of the result is set to

one.
0 ORAOD =0
0ORA 1l =1
1 ORA O =1
1 0RAL =1

You can see from the value table that this is the
"inclusive" OR. The result is one if the first operand
and/or the second operand is one, not in the sense of
either/or (but not both). The OR instruction affects the

N and Z flags. Here's an example:
ORA #$37

The accumulator contains $5D. ORing the accumulator with

$37 works like this:

$5D 01011101
$37 00110111

$TF 01111111

The result is %01111111 or $7F. This corresponds exactly

to the BASIC instruction OR:

The Machine Language Book of the Commodore 64

A = A OR $37

in our case, A = $5D OR $37 or A = 93 OR 55. We get 127
or $7F.

The table below contains the operation codes for each

address ing mode.

Address mode ORA
immediate $09 operation codes
absolute $0D
zero page $05

absolute x-indexed $1D
absolute y-indexed §$19
zero-page x-indexed $15
indirect indexed $11
indexed indirect $01

The Exclusive OR instruction
The operand and the accumulator are compared bit by bit.
The result is set to one if either one or the other bit

is one, but not both. The truth table looks like this:

0 EOR 0 = 0
0 EOR 1 =1
1 EOR 0 =1
1 EOR 1 =0

45

The Machine Language Book of the Commodore 64

46

The result of the operation is one if the two bits do not
equal each other. Here too the N and Z flags are affected
according to the result. There is no corresponding BASIC
instruction. In BASIC you have to compare all the bits

individually with a loop. An example looks like this:

EOR #$37

The accumulator contains $5D. EORing the accumulator with

$37 gives the following:

$5D 01011101
$37 00110111

"$6A 01101010

The result is %01101010 or $6A (106).

The table below contains the op codes for the different

addressing modes:

Address mode EOR
immediate $49 operation code
absolute $4D
zero page $45

absolute x-indexed $5D
absolute y-indexed $59
zero-page x-indexed $55
indirect indexed $51
indexed indirect $41

The Machine Language Book of the Commodore 64

The BIT instruction

A special feature of the 65XX microprocessors is the BIT
instruction. This instruction does not change the
contents of any registers. It affects only the flags. The
contents of the accumulator are ANDed with the contents
of the addressed memory location. If the final result is
zero, the 2 flag is set, otherwise it is cleared.
Additionally, the value of the sixth bit of the addressed
location is placed into the V flag and the seventh bit is
put in the N flag. With this one can check these two bits
of a memory location without disturbing the contents of

any of the registers. Let us look at an example:

LDA #S10
BIT $1234

The accumulator contains $10; address $1234 contains $43.

The AND operation yields the following result:

$10 $00010000 ;contents of accumulator
$43 $01000011 ;contents of memory location $1234
AND $00000000 ;logical result of AND

The AND operation produces zero, so the Z is then set.

The V flag equals the sixth bit of the operand, one,

while the N flag is cleared. The result is:

47

The Machine Language Book of the Commodore 64

Two addressing modes

instruction:

Address mode BIT

can be .used. with the

zero page $24 operation codes

absolute $2C

48 ,

BIT.

The Machine Language Book of the Commodore 64

F. The Compare instructions

These instructions compare the contents of a register
and the contents of a memory location. These instructions
alter neither the register nor the memory contents,"
affecting only the flags. You can determine the

relationship of the two numbers by examining the flags.

The compare instructions work by logically "subtracting"
the contents of the addressed memory contents from the
contents of the register and setting the flags és if an
actual subtration occurred. The register contents are not
changed. The C, N, and Zz flags are affected depending on
the result of the "subraction", There are compare
commands for the three work registers of the

microprocessor.

The CMP instruction

This instruction compares the contents of the accumulator
with the contents of the addressed memory location, by
logically subtracting the contents of the operand from
the accumulator. If an underflow occurs, the carry flag
is cleared; otherwise it is set. If the result is zero,
the 2 flag is set; otherwise it is cleared. If the result
is greater than $7F (127), the N flag is set, otherwise

it is cleared. Let us take a look at an example:

49

The Machine Language Book of the Commodore 64

50

LDA #$50
CMP #$30

The accumulator contains $50. The calculation $50 - $30
is then carried out, with a result of $20. Because no
underflow occurred, the carry flag is set. The zero flag

is cleared because the result is not equal to zero. The N
flag is cleared because the number is not greater than

$7F. We get the following result:

Now another example:

LDA #$30
CMP #$30

Since the accumulator now contains $30, the logical
subtraction yields zero. The carry flag is set because no
underflow occurred., Since the result is zero, the zero

flag is set this time, The N flag is clear because the

result is not greater than $7F.

Finally a last example:

The Machine Language Book of the Commodore 64

LDA #$10
CMP #$30

In this example, the accumulator contains $10 and the
logical subtraction yields $10 - $30 = $F0. The carry
flag is cleared to indicate the underflow and the 2 flag
is cleared because the result is not zero. This time the

N flag is set.

In practice, the flags indicate that the accumulator

contents are:

c=1 ¢ >= greater than or equal to the operand
z2=1 s = equal to the operand
c=0 s < less than the operand

To determine if the accumulator is greater than the
operand (not greater than or equal to), two flags must be

checked:

Z=0and C =1
The compare instructions alter only the flags; they are
the basis for the conditional branch instructions

described in the next section. Note that these flag

interpretations are for comparing unsigned integers only.

51

The Machine Language Book of the Commodore 64

52

This table contains the operation codes for : each

addressing mode:

Address mode CMP
immediate $C9 operation codes
absolute $CD
zero-page $CS

absolute x-indexed $DD
absolute y-indexed $D9
zero-page x-indexed $D5
indirect indexed $D1
indexed indirect $Cl1

The CPX instruction

The CPX instruction works the same way as the CMP
instruction. Here the contents of the addressed memory
location are compared not with the contents of the
accumulator, but rather with the contents of the X-
register. The contents of the registers are not altered.
What was said above concerning the CMP instruction
applies to the CPX instruction as well. There are not as

many addressing modes for the CPX instruction, however.

Address mode CPX
immediate SE0 operation codes
absolute $EC
zero page SE4

The Machine Language Book of the Commodore 64

The CPY instruction

These instructions are the same as the CPX instructions
except that the Y-register is used in place of the X-

register., There are only three addressing modes.

Address mode CPY
immediate $CO0 operation codes
absolute $cc
zero page $C4

53

The Machine Language Book of the Commodore 64

54

G. Conditional branching instructions

Next we introduce the instructions that allow you to make
programming decisions. The foundations of these decisions
are the conditions of the flags. The following four flags
can be used to make decisions: the Zz flag, the N flag,

the C flag, and the Vv flag.

For each flag there are two conditional branch commands:
the first branches if the flag is set, the second if the
flag is clear. The operand of each conditional branch
instruction specifies the location where the micgo—
processor is to get the next operation code should the

condition tested for be true.

The 6510 microprocessor uses the relative addressing mode
for conditional branch instructions. The operand is not
an absolute memory address, but rather an address
relative to the current contents of the program counter,
This relative address is an 8-bit value. The relative
address is added to the contents of the program counter
and the branch is made to that computed address if the

condition tested for is true.

With this 8-bit value you can represent 256 different
numbers, so you can branch to any of 256 possible
locations. The relative address causes a branch forward

if the 8-bit value is positive and causes a branch

The Machine Language Book of the Commodore 64

backward if the 8-bit value is negative. So relative

addressing can perform backward branching by allowing the

use of negative operands.

Let's talk a bit about negative numbers. Using two's
complement representation all numbers having bit seven

set are considered to be negative:

$10000000 $80 -128
$10000001 $81 -127
$11111110 "SFE "l
$11111111 $FF -1
$00000000 $00 0
$00000001 $01 1
$00000010 $02 2
$01111110 'S7E 126
$01111111 $TF 127

The seventh bit determines if the number is positive or
negative (also the condition of the N flag). Let's look
at how we can calculate the distance for a relative
branch., The calculation is based on the address of the
instruction following the conditional branch instruction.
An example: The branch instruction is at-address $C47A

and we want to branch to $C4BF.

$C47A address of branch instruction
$C47cC address of next instruction
SC4BF destination address

Now we simply find the difference between destination and

55

The Machine Language Book of the Commodore 64

the address of the instruction following the conditional

branch instruction:

$C4BF - $C47C = $43

The operand for our branch instruction is $43. How do we
calculate the relative address for a backward branch? Say
we want to branch to the address $C440. You can calculate

the relative address as follows:

$C440 - $C47C = SFFC4 with underflow

Simply use the least significant byte - $C4 as the
operand for the conditional branch instruction. You could
also calculate the relative address by obtaining the
positive difference and taking the two's complement of

the result.

$C47C - $C440 = $3C

The two's complement:

$00111100 original value = $3C

$11000011 invert all bits = $C3
+ 1 add 1

$11000100 = two's complement = $C4

Here also we get an offset of $C4.

What advantages does relative addressing have? First of

The Machine Language Book of the Commodore 64

all, the branch instructions take up only two bytes in
memory. Besides the savings in memory there is a faster
speed of execution. A two byte instruction is executed
faster by the microprocessor. The most important
advantage of relative addressing is that the branch
address is relative to the point of execution. Since the
branch instructions do not use absolute addresses, if you
place the same program segment in a different place in
memory, the program does not have to be changed--the

location to the branch address does not change.

If the address to brarch to were given in absolute form,
it would have to be changed if the program were move to a
different memory location. The disadvantage of relative
addressing is the limited address range to which we can
branch, Only 129 bytes forward or 126 bytes backward from
the branch instruction is the maximum that can be jumped.
In practice this is usually no great hindrance, thougﬁ,

because it is seldom that a larger distance is involved.

If you have found the address calculation of relative
addressing quite complicated, you can rest at ease. We
have presented this discussion only so that you
understand the principle. Later, the assembler will tale
over this work for you; you need only give it the branch
destination. The assembler will bring it to your

attention if you attempt to jump beyond the permitted

57

The Machine Language Book of the Commodore 64

58

distance.

Branch on zero flag

A branch when the zero flag is set results from the
instruction "branch on equal," shortened to BEQ. If the
branch is to be made on a cleared zero flag, the

instruction is called "branch not equal," BNE.

Branch on carry flag

Here the instruction is called "branch on carry set" or
BCS for branching on a set carry flag and "branch on

carry clear", BCC, for a branch on carry clear flag.

Branch on negative flag

If the negative flag is set, the instruction "branch on
minus," BMI, will branch; in order to jump on a clear

negative flag, the instruction "branch on plus," BPL,

must be used.

The Machine Language Book of the Commodore 64

Branch on overflow flag

The overflow can also be used as the basis for

conditional branches. The corresponding commands are

"branch on oVerflow set," BVS, and “"branch on overflow

clear," BVC. Because of the secondary importance of the V

flag, these commands are seldom used.

This table contains all commands for conditional

branching, together with their op codes.

Command Op code
BEQ SFO
BNE $DO
BCS $BO
BCC $90
BMI $30
BPL $10
BVS $70
BVC $50

59

The Machine Language Book of the Commodore 64

60

H. The Jump instructions

In contrast to the conditional branch commands above, the
unconditional jump instructions branches to an absolute
address. These instructions are not dependent on any
condition and is always executed. The destination address
is specified in reverse sequence (low-byte followed by

high-byte) as are thé other absolute addresses.

JMP $C420 direct jump to location $C420

In addition to the absolute form of the jump instruction,
there is also an indirect addressing form, a peculiarity
of the jump instructions. With this instruction, the
specified address is not jumped to. Instead, this address
tells where to get the actual destination address. For
this, two consecutive bytes are again used as a pointer,

in the format low byte, high byte.

JMP ($0302) indirect jump to destination pointed
to by address $0302

The actual address is now taken from memory locations
$0302 and $0303. If, for example, $40 and $C8 are in
these locations, a branch to location $C840 will be made.
This method of addressing works only with the JMP

instruction. The table contains the operation codes for

The Machine Language Book of the Commocdore 64

both addressing modes.

Address mode JMP

absolute $4C operation codes
indirect $6C

The operating system of the Commodore 64 makes use of
this method of addressing., There are several addreéses
(called vectors) located from $300 to $33C, that contain
addresses for indirect JMPs. The operating system uses

these vectors for performing frequently used routines.

61

The Machine Language Book of the Commodore 64

62

I. The Increment and Decrement instructions

For effective progfamming of loops and counters, the 6510
has commands to increment or decrement the contents of a
register or memory location by one. These increment
instructions correspond, together with the conditional
branching commands, to the NEXT instruction in BASIC. The

STEP-1 instruction can be simulated with the decrement

commands.

INX

The contents of the X register are incremented by one.
The N and 2 flags are set according to the result. In

BASIC, this instruction can be formulated:

If a value of $FF is incremented, the overflow is not

taken into account (the carry flag is not set). The

contents are set to zero, and the Z flag is set.

INY

This is the corresponding instruction to increment the Y

register. It affects the flags in the same way.

The Machine Language Book of the Commodore 64

There is no instruction on the 6510 to increment or

decrement the accumulator contents.

INC

This instruction increments the contents of a memory
location by one. The Z and N flags are again set
depending on the result, This instruction is different
from the previous ones in that here the contents of a
memory location is first read, then incremented by one,
and then saved again (read - modify - write). The
commands which you are acquainted with so far either read

or wrote a memory location, but never both. The IMC

instruction does not alter the contents of the

accumulator.

In pseudo-BASIC, we can formulate this like so:

POKE M, PEEK(M) + 1

M is the address of the memory location.

63

The Machine Language Book of the Commodore 64

64

DEX

This instruction decrements the contents of the X
register. When decrement from $00 to $FF, the carry flag
is not set., The N and 2z flags are set depending on the

result, In psdueo-BASIC this can be written as

DEY

This instruction is the analog of the previous
instruction, decrementing the contents of Y instead of X.

The flags are affected in the same manner,

DEC

With this instruction the contents of a memory cell can
be decremented without losing the contents of the
accumulator. Its operation is equivalent to that of the

INC instruction.

Here again is the table of instructions and their

opcodes:

The Machine Language Book of the Commodore 64

Command Op code

INX SE8

INY $C8

DEX $SCA

DEY $88

Address mode INC DEC

absolute SEE S$CE operation codes
zero page SE6 $Cé

absolute x-indexed S$FE S$DE

zero-page x-indexed $F6 $D6

65

The Machine Language Book of the Commodore 64

66

J. Flag manipulation instructions

In addition to the instructions whose results affect the
flags, the flags can also be directly set or cleared by
the programmer. Sometimes this is necessary before
performing addition and subtraction. These instructions
do not require any operands. They are all one-byte in

length.

The carry flag

The carry flag is set by the instruction SEC (set carry),

and cleared by CLC (clear carry).

The SEC instruction must be used before each subtraction
and the CLC instruction before each addition, otherwise

the answer may be wrong.

The decimal flag

This flag determines whether the processor performs
addition and subtraction iﬁ binary (indicated by a
cleared flag, as we have already learned) or in binary-
coded decimal (BCD). This is the case if the flag is set.
The microprocessor then works with BCD numbers. The

instruction SED (set decimal) sets the flag, CLD (clear

The Machine Language Book of the Commodore 64

decimal) clears the flag.

The interrupt flag

The I flag determines whether the processor is ready to
accept an interrupt or not. If the I flag is set with SEI
(set interrupt disable), no interrupts will be accepted,
while if it is cleared with CLI (clear interrupt

disable), the processor can accept interrupts.

The overflow flag
The V flag can only be cleared on instruction. The

instruction CLV (clear oVerflow) serves this purpose.

This table contains the operation codes for these one-

byte commands.

Command Op code
CLC s18
SEC $38
CLD s$N8
SED SF8
CLI $58
SEI $78
CLv $B8

67

The Machine Language Book of the Commodore 64

68

K. The sShift Instructions

The 6510 microprocessor has some instructions for which
there are no equivalents in BASIC: the shift
instructions. These instructions shift the bits in the
accumulator or addressed memory location one position to
the right or left. If these instructions are used in
reference to the accumulator, one speaks of accumulator
addressing. Depending on the addressing mode, these
commands can consist of one, two, or three bytes. If a
memory location is addressed, they behave as an INC or
DEC instruction by following a read with a write. The
contents of the accumulator remain unchanged by this

addressing mode.

ASL

ASL stands for "arithmetic shift left." It shifts the of
the addressed byte by one bit-position to the left. A
zero is placed in the right-most bit (bit 0) and the
carry flag is set equal to the left-most bit (bit 7). Let

us look at an example using the accumulator.

ASL A The accumulator contains $47

$47 $01000111
$10001110 $8E, C =0

The Machine Language Book of the Commodore 64

In this case, the result is $8E and the carry flag is
cleared because the accumulator contains a zero in the
seventh position. If we compare the contents of the
accumulator before and after the shift, we notice that
the accumulator has doubled. When we shift a normal
decimal number one position left, we get the value times
ten. With the binary system, shifting left to the next
position results in only doubling the value. With the ASL
instruction we have a simple method of doubling a number.

Let us try another example:

ASL A The accumulator contains $CD

$CD $11001101
%10011010 $9a, C =1

Here too we double the original value and the carry flag
is set. The double of $CD (205) is therefore $19A (410).

LSR

The LSR instruction (logical shift right) corresponds to
the ASL instruction; here, however, the value is shifted

right. The seventh bit is loaded with zero and bit zero

is placed in the carry flag.

LSR A The accumulator contains $CA.

69

The Machine Language Book of the Commodore 64

70

$CA 311001010
$01100101 $65, C = 0
The result is $65. The carry flag contains the value of
bit position 0 before the shift occurs, in this case 0.
So the carry flag is clear. You may have noticed that,
shifting one bit position to the right divides the
original value by two. The carry flag gives the contents
of bit 0 before the shift. We can interpret the value of
the carry as the remainder of the division by two. This
way we can tell if a number is odd or even. The LSR
instruction shifts the lowest bit into the carry. The
carry flag can then be tested with BCC or BCS. If a
memory location is addressed with the LSR instruction,

the contents of the accumulator are retained.

ROL

With the ROL instruction (rotate left) we can shift a
memory location or register left cyclically, that is,
rotate the bits. The carry flag is shifted into bit 0
while the contents of bit 7 are placed in the carry.
Therefore we have a cyclical shift of nine bits (8 bits
of the register plus the carry flag). An example will
clarify this.

ROL A The accumulator contains $4B,
the carry flag is set.

$4B %01001011 C=1
$97 %10010111 Cc=0

The Machine Language Book of the Commodore 64

All bits are shifted one position to the left. The carry
flag is transferred into the now-vacant bit 0. The
pushed-out seventh bit is placed into the carry. We get a
result of $97 and a cleared carry. Here again the
contents of the accumulator are doubled; any overflow is

placed into the carry.

ROR

The ROR instruction (rotate right) is the opposite of the
ROL instruction and rotates the contents of a register
cyclically one position to the right. In so doing, the
contents of the carry flag are placed into the now-free
position 7 while the pushed-out contents of bit 0 are

placed into the carry flag.

ROR A The accumulator contains $89,
the carry flag is clear.

$89 $10001001 C=0
$44 %01000100 C=1

From $89 we get $44, the carry is set and indicates a
remainder from the division by two. All shift and rotate
commands set the N and 2 flags depending.on if the result
greater than $7F or equal to O.

This table contains the operation codes for all

71

The Machine Language Book of the Commodore 64

72

addressing modes:

Address mode ASL LSR ROL ROR
accumulator SOA S4A S$2A S$6A
absolute SOE S$4E S$S2E S$S6E
zero page $06 $46 $26 $66
absolute x-indexed S$1E S$5E $3E S$7E
zero page y-indexed $16 $56 $36 $76

operation code

The Machine Language Book of the Commodore .64

L. The Subroutine Instructions

A very important programming technique; which you already
know from BASIC, is the use of subroutines. In BASIC, the
instruction GOSUB is used to call a subroutine, and the
instruction RETURN is used to return from the subroutine.
How is a subroutine call distinguished from a normal jump
instruction such as GOTO or JMP? When we call a
subroutine, the processor or BASIC interpreter must make
note of the location from which the subroutine was called
so that the RETURN instruction can branch back to the
location following the call. The BASIC interpreter does
this for us; the 6510 also handles this task for us in
machineflanguage. In spite of this, however, we should

know how it works.

So that the processor knows which instruction to branch
back to on a RETURN instruction, the current address of
the program counter is saved when the call is made. A
special storage area is reserved for this, called the
stack. This stack lies from address $0100 to $O1FF (256
to 511). There is something called a stack pointer so
that the microprocessor knows at which address of the
stack it can save a return addrgss. We have already been
introduced to the stack regisé;r. Let's take a look at

what happens when a subroutine is called.

The processor takes the current contents of the program

73

The Machine Language Book of the Commodore 64

74

counter (+2) and divides it into high and low bytes. The
high byte is stored at address $100 plus SP. Then the
contents of the stack pointer are decremented by one and
the low byte is stored on the stack (address 100 + SP).
Finally the stack pointer is decremented by one again,

Now a branch is made to the subroutine,

When the processor encounters an RTS instruction, the
opposite process takes place. The stack pointer is
incremented by one and one byte is taken from the stack
(address $100 + SP). This byte is used as the low-byte of
the program counter. Then the stack pointer is
incremented again and the high-byte of the program
counter is fetched from the stack. Now the program
counter points to the next instruction after the

subroutine call and the program is continued there.

When values are placed on the stack, the value is first
saved on the stack and then the stack pointer is
decremented by one., When getting a byte back from the
stack, the stack pointer is first incremented by one. The
stack grows from top to bottom (from $1FF to $100). An
example will explain these events.

$C480 JSR $2000 SP SFA

$01FA = $C4 SP=SP-1
$01F9 = $82 SP=Sp-1
SP = $F8

The Machine Language Book of the Commodore 64

Now execution branches to $2000, where for our example,

there is a RETURN instruction.

$2000 RTS SP = $F8
SP=SP+1 PCL = ($01F9) = $82
SP=SP+1 PCH = ($01FA) = $C4

SP = S$FA

The program counter now contains $C482. This value is
then incremented by one and so points to $C483, the next

instruction after the subroutine call at address $C480.

The stack works on the principle "Last In--First Out"
(LIFO). The value last placed on the stack is the first
value to be returned. Using this principle, it is also
possible to nest subroutines. If a subroutine is called
from another subroutine, the first RTS instruction
encountered returns the instruction following the most
recent JSR instruction. The next RTS instruction then
returns control to the instruction following the next

most recent JSR instruction., For example:

this JSR this JSR
calls this subroutine calls this subroutine
MAINPGM SUB1 SUB2
. JSR SUB2 .
JSR SUB1 N .
. RTS RTS
. 1 i
this RTS this RTS
RTS returns to this returns to this
instruction instruction

75

The Machine Language Book of the Commodore 64

Once you become familiar with the operation of the stack,
'you can also use it for temporary storage of data. This

‘'is described in the next section.

‘The table contains the operation codes for subroutine

call and return.

Command Op code
JSR $20
RTS $60

76

The Machine Language Book of the Commodore 64

M. The Stack Instructions

The 6510 has the ability to save the contents of the
accumulator and the status register on the stack and to
get them back again. The stack pointer is automatically

decremented after writing and incremented before reading.

PHA

The instruction PHA (push accumulator) saves the contents
of the accumulator on the stack and decrements the stack
pointer by one., The contents of the accumulator are

unchanged.

PHP
With the PHP instruction (push processor status), the
entire status register (contents of the flags) is placed

on the stack and the stack pointer is decremented by one.

The contents of the status register are retained.

PLA

The PLA instruction (pull accumulator) is the opposite of

PHA. The stack pointer is incremented and a byte read

77

The Machine Language Book of the Commodore 64

from the stack into the accumulator. The N and Z flags

are set according to the value.

. PLP

78

"With this instruction, one byte is fetched from the stack

and placed in the status register. This is the complement

of PHP.

The table contains the operation codes.

Command Op code
PHA $48
PHP $08
PLA $68
PLP $28

The Machine Language Book of the Commodore 64

N. Instructions for handling interrupts

We are not going to use use these instructions but
mention them only for the sake of completeness. The 6510
has the ability to interrupt a program from the outside
world. For this, the interrupt line (IRQ, interrupt
request) of the processor must be activated. The
interrupt procedure is similar to a subroutine call. The
processor interrupts the current program and places the
contents of the program counter and the status register
on the stack. Now execution branches to the address
contained at S$FFFE and $FFFF. The contents of these

addresses are used as the new program counter,

In addition to an interruption from the outside, the 6510
can also interrupt a program through a instruction from
within the program. The instruction BRK (break) serves
this purpose. The program counter and the status register

are saved on the stack.

In order to return to the main program from an interrupt
routine, there is a instruction similar to the RTS
instruction for subroutines. The instruction RTI (return
from interrupt) gets the program counter and the contents
of the status register back from the stack so that the

program can continue without changing the flags.

The following table contains the operation codes for

79

The Machine Language Book of the Commodore 64

80

these commands:

Command Op code
BRK $00
RTI $40

There is one instruction which has not been mentioned yet
which does absolutely nothing and so is called NOP (no
.operation)., This instruction is used to remove operation
codes from a program without shifting the rest of the
commands, as well as in delay loops (this instruction too

requires a certain amount of time to execute).

Command Op code

NOP SEA

The Machine Language Book of the Commodore 64

4. Entering Machine Language Programs

Now that we have become acquainted with the instructions of
the microprocessor and their functions, 1let's turn our
thoughts to writing programs in machine language. How do we

enter such programs?

As we have already seen from the descriptions of the
instructions, a machine language program program consists
simply of a set of instruction codes and their corresponding
operands, if any. As a simple example, we will display a
character on the screen of the Commodore 64. We can do this

with these simple POKE commands in BASIC:

POKE 1024,1
POKE 55296,7

REM DISPLAY CODE FOR A
REM COLOR CODE FOR YELLOW

When we execute both commands, a yellow "A" appears in the
upper left-hand corner of the display. Now we want to see
how these two commands can be performed in machine language.
For this, we recall that the POKE command can be replaced by
the instruction STA. This instruction places the contents of
the accumulator at the address specified by the operand.

First load the accumulator with the desired value.

LDA #1
STA 1024

Here the accumulator is loaded with the value 1 and the

81

The Machine Language Book of the Commodore 64

contents are saved at address 1024. In the same way, we can

set the value for the color code.

LDA #7
STA 55296

If we were to try entering these instructions directly into
the computer, we would get a 2SYNTAX ERROR. The Commodore 64
normally understands onlyiBASIC commands, These
instructions are "foreign" to the BASIC interpreter,
Therefore we must proceed in a different manner. Recall that
a machine language program is nothing more that a group of

binary instruction codes and operands in memory.

We must convert the mnemonic instructions into their
corresponding binary instruction (or operation) codes. To do
this, we use the table in Appendix A. For a LDA instruction
using the immediate addressing mode(we want to load the
accumulator with the number 1, not with the contents of
memory location 1) we find that the opcode is SA9. Next
follows the operand itself, 1. We are using absolute
addressing for the STA instruction. The instruction is
therefore $8D., The operand in this case is a memory address,
saved as a 16-bit value., For this it must be divided into
two 8-bit values., First comes the low-byte and then the
high-byte. Separating a 16-bit value is easier to perform if
we first convert the number to hexadecimal. Therefore we

convert 1024 to the hexadecimal number $0400. 55296 becomes

82

The Machine Language Book of the Commodore 64

$D800. Let's rewrite our program using hexadecimal numbers.

LDA #S01
STA $0400
LDA #$07
STA $D800

The low-byte of $0400 is $00 and the high-byte is $04. The
instruction STA $0400 is represented as $8D, $00, $04. LDA
#$07 STA $D800 are represented as $A9, $07, $8D, $00, $DS8.

Our complete program looks like this:
$A9, $01, $8D, $00, $04, SA9, $S07, $8D, $00, $D8

This set of bytes must now placed in memory. Here we
encounter the next problem: Where should our program be
placed in memory? We must find an area which is not used by
the operating system or the BASIC interpreter. For the
Commodore 64 we have such an area from address 49152 to
53247 or $C000 to S$SCFFF. This area is 4K bytes large and
will suffice even for very large machine language programs;
Let's place our program in memory beginning at address
49152, We can do this with a small BASIC program, First

change the hexadecimal numbers to decimal.

169, 0, 141, 0, 4, 169, 7, 141, 0, 216

100 FOR I=0 TO 9

110 RFAD A : POKE 49152+I,A

120 NEXT

130 DATA 169,0,141,0,4,169,7,141,0,216

83

The Machine Language Book of the Commodore 64

When we RUN this program, the machine language program is
usually placed into memory beginning at address 49152. Now
we can finally execute our program. The SYS instruction is
used for this in BASIC. If we give the starting address of
49152 after the SYS instruction, the program is executed
from BASIC. Be careful! What happens once the processor has
executed the instruction STA $D800? It gets the contents of
the next memory location and interprets it as a instruction
code. If it is not a legal instruction, the processor may
enter an uncontrollable state and "crash." You must then
turn the computer off and then on again. The program is lost

and you must start over from the beginning.
Once the processor has executed the four instructions,
control should be returned to the BASIC interpreter. The SYS

instruction executes our program as a subroutine. We should

end the program with an RTS instruction.

POKE 49152+10,96

We can place the RTS code at the end of our program. Now we

can start our program with:

SYS 49152

Immediately a yellow A appears in the upper corner of the

display and the computer responds with READY..

84

The Machine Language Book of the Commodore 64

Is this procedure too complicated for you? If so, then you
are not alone. Ways have been found to automate this

process. After all, this is why you have has a computer!

You need a program that accepts machine language
instructions such as "LDA #1" and automatically converts the
mnemonics to their proper operation code and writes the
generated code into memory. Such a program is called an
assembler. So that you can start working with an assembler
from the beginning and not lose your desire by working
through boring calculations and table consultations, we have
written a complete assembler for you. Before we explain .the
operation of the assembler, we will take a look at other
utility programs that can be used for machine language

programming.

The first is the monitor program. A monitor permits the
direct access of the memory and registers of the
microprocessor. With the monitor you can examine and alter
the contents of memory and registers. In addition, you can
start executing a machine language program from a monitor.
Most monitor programs also permit saving and loading of
programs to/from cassette or disk. If you have a monitor,
then you can enter your machine language programs in hex
code. This is fine for small programs or changes. Often the
monitor contains something called a disassembler as well.
Such a program is the opposite of an assembler. The

disassembler reads a program from memory and outputs it in

.85

The Machine Language Book of the Commodore 64

mnemonic form; $A9, $01 are translated to LDA #$01, for
example., We have also written a disassembler, It is
presented later. Using this program you can disassemble not
only your own programs, but parts of the operating system
and BASIC interpreter as well, You can often get valuable

hints by looking at other example of good programming.

86

The Machine Language Book of the Commodore 64

4. The Assembler

Here's a small machine language program that demonstrates
the advantages of an assembler over manual entry of a

machine language program.

This program displays the entire character set of the

Commodore 64 on the screen. We'll do this first with a BASIC

program,

The Commodore 64 can display 256 different characters on the
screen; the display codes range from 0 to 255. Each display
code places a unique character on the screen. Using BASIC

you can do this with a loop.

100 X =0

110 A = X

120 POKE 1024+X, A : REM DISPLAY CODE
130 A =1

140 POKE 55296+X, A : REM COLOR CODE
150 X = X + 1

160 IF X <> 256 THEN 110

170 END

If you RUN this program, the entire character set of the
Commodore 64 is displayed. Note that the time to RUN this

program is about 7 seconds.
This BASIC program is written so that you can easily convert
it to machine language. Now for the conversion! We'll handle

it line by line. First we can use the X-register in place of

87

The Machine Language Book of the Commodore 64

the variable X:

100 X = 0 => LDX #S0
We can use the accumulator in place of the variable A. The
next line copies the contents of the X-register into the
accumulator:

110 A = X => TAX
The contents of the X-register remains unchanged. Now
the contents of the accumulator are place into memory at
location 1024+X. Indexed addressing is used:

120 POKE 1024+X, A => STA 1024,X

Next the accumulator is loaded with the color code for
white, 1.

130 A =1 => LDA #1

This color code is then stored in the corresponding color

memory location, 55296+X. Again indexed addressing is used:

140 POKE 55296+X,A => STA 55296,X

The value in the X-register is now incremented by one:

150 X = X + 1 => INX

88

The Machine Language Book of the Commodore. 64

The next conversion is not as straight-forward:
160 IF X <> 256 THEN 110 => ?

This BASIC statement requires some consideration. We want to
branch back to line 110 if the contents of X is not equal to
256. But the X-register can hold values only up to 255. What
happens when the X-register contains 255 and an IMNX
instruction (in line 150) is executed? Incrementing from 255
($FF) we get $100. The overflow is simply ignored and the

result is $00--zero.

How can we recognize this case? Recall the discussion
concerning the flags. Each time the X-register |is
incremented, the N and Zz flags are also affected. After the
INX instruction, if the value in the X-register is greater
than $7F (127), the N flag is set, otherwise it is cleared.
Similarly if the value in the X-register is zero after the
INX instruction, the Z flag is set, otherwise it is cleared.

So can use the contents of the zero flag as the basis of our

decision. If it is not set, the contents are not equal to

256 (0) and we must branch baék to line 110.
160 IF X <> 256 THEN 110 => BNE 1line 110

Here's another problem. In machine language programming we
cannot say "branch to line 110". Instead we must specify the

memory address at which the instruction in line 110 is

. 89

The Machine Language Book of the Commodore 64

located.

We do not know what the address is yet., We must determine
the program starting address and the length of each

instruction. If we begin the program at address 49152 or

$C000, then these are the addresses of each instruction:

LINE# ADDRESS MNEMONIC

100 $C000 LDX #0

110 $C002 TXA

120 $C003 STA $0400,X

130 $C006 LDA #1

140 $C008 STA $D800,X

150 $C00B INX

160 $cooc BNE $C002 *
170 SCOOE RTS

How did we do this? First set a "program counter" to the
starting address of the program. In this case it starts at
$C000. Now find the length of each instruction by looking
in Appendix D. The length is either one, two or three bytes.
Update the "program counter" by adding the length of the
instruction, The "program counter" now contains the address

of the next instruction. Repeat this for each instruction.

After hand assembling the program, we find that the
instruction at line 160 must branch to address $C002. Now

take the trouble to convert the program to generate the

machine code. Here's the code:

90

The Machine Language Book of the Commodore 64

100 $C000 A2 00 LDX $0

110 $C002 8A TXA

120 $C003 9D 00 04 STA $0400,X
130 $C006 A9 01 LDA #1

140 $C008 9D 00 D8 STA $D800,X
150 $CO0B E8 INX

160 $cooc D0 27 BNE $C002
170 SCOOE 60 RTS

We can substitute the operation code for the mnemonic
according to APPENDIX A. We must convert the 16-bit absolute
addresses found in line 120 and 140 to their reverse forms
(00 04 and 00 D8). Next we must calculate the missing offset
for the branch instruction in line 160. To do this, first
form the positive difference between the addresses and form

the two's complement of the result.

$COOE
- $C002
$000C
$0C = %00001100 original value
$11110011 invert all bits
+ 1 add 1l
$F4 $11110100 two's complement

We find that the offset is $F4. Enter this value as the

operand of the BNE instruction above.

We have completed the hand assembly of this program. To test
the program, the machine language program has to be in
memory. You have to write the operation codes into memory

somehow such as POKing them.

91

The Machine Language Book of the Commodore 64

Here's an example:

100 REM SAMPLE ML PROGRAM TO DISPLAY CHARACTERS ON SCREEN
150 ML = 49152

200 FOR I = 0 TO 14

210 READ OC

220 POKE ML+I,0C

230 NEXT I

240 END

300 DATA 160, 0, 138, 157, 0, 4, 169, 1

310 DATA 157, 0, 216, 232, 208, 244, 96

Run the BASIc program to put the machine language routine in
memory beginning at 49152. Now to test it, move the cursor

to the lower half of the screen and enter:

SYS 49152

Almost immediately, the entire character set appears on the
screen. The program which took more than seven seconds to
run in BASIC now runs in a fraction of a second. It is an

impressive demonstration of the speed which can be attained

with machine language.

Now let's use the LEA (Lothar Englisch Assembler - named
after the author) to enter machine language programs. An
assembler makes machine language programming quicker,
easier and less prone to error. Using the LEA, you can enter
machine language programs into the computer in exactly the
same way as you enter BASIC programs. You can add, delete or
insert or change lines just as in BASIC. The listing for

the LEA is at the end of this chapter.

92

The Machine Language Book of the Commodore 64

A program line is called a source statement. When using the
LEA, the source statement always begins with a line number.
It also has: an optional label (more about this shortly);
the mnemonic code for the machine language instruction (LDA,
STA, etc.); any required or optional operand(s); and
optional comments. By using comments within your assembler
source program, you can deécribe the purpose of each
instruction. Comments are denoted with a semicolon and are
ignored by the assembler, but appear in the listing for your

own information., They correspond to the BASIC command REM.

A complete line of assembler source for the LEA might look

like this:
100 TEXT LDA $70,X ;GET START VALUE

A complete LEA source program can also be SAVEd to disk,
just like BASIC. The LEA requires you to distinguish this
source program from the machine language program that it
later creates by suffixing .SRC to the name. After you
create your assembler source file, you then load the LEA
assembler. Once started with RUN, LEA asks for the name of

the program to be assembled (the one you just SAVEd). The

LEA reads this program from the disk and creates the machine

code program from it, which it places directly in memory.

In addition, the LEA produces an optional assembly listing

containing the line numbers, source statement instructions

93

The Machine Language Book of the Commodore 64

including comments and generated machine codes in
hexadecimal format. When assembling, the LEA automatically
calculates the addresses and offsets for branches. You as
the programmer, need give the branch destination not as an
absolute address, but symbolically in the form of a label
(also called symbol). Our example program from before looks

like this:

100 LDX #0

110 LoOOP TXA

120 STA $0400,X
130 LDA #1

140 - STA $D800,X
150 INX

160 BNE LOOP
170 RTS

Here -we simply give a label to the address that we want to
refer to later. In this case we used the symbol LOOP. As the
assembler processes the source program, it encounters a
label, It makes note of the label, LOOP, and the value the
program counter at which the label (or symbol) is found. 1In
our example, the program counter has the value $C002 at line
110. The assembler assigns this value to the symbol LOOP.
Later, the offset for the branch instruction can be
calculated from the immediate value of the program counter
and the value of the symbol., As the assembler works its way
through the source program, it automatically places the
operation code for the mnemonic instructions and their
operands in memory so that the machine language program is

ready to be executed at the end of the assembly.

94

The Machine Language Book of the Commodore 64

Using this technique, it is possible that you might refer to

a label before it is defined:

100 LDA $40
110 BEQ CONT
120 LDX #SFF
130 CONT STX $D840
140 RTS

In this program line 110 refers to a label (CONT) which at
that point is not yet defined. The assembler has no way of
knowing the value of the symbol CONT. So the assembler is
designed to go though the source program twice., The first
time through, the LEA makes note of all the symbols and
their values. The second time through, it does the actual
assembling or code generation. So during the second time
through, when the LEA comes to line 110, it already knows
the value of CONT from the first time through and can

calculate the offset for the branch instruction.

Since the LEA assembler reads the source program twice, it
is said to be a 2-pass assembler. So that you can see the
progress of the assembler, the LEA displays the number of

the line it is currently working on.

When you enter a source program by using the built-in BASIC

line editor, the BASIC interpreter searches through the
source statements for BASIC command keywords. When it finds
them, it converts these into one-byte codes called tokens.

As a result, the LEA assembler cannot normally recognize

95

The Machine Language Book of the Commodore 64

words that contain BASIC keywords such as ON, TO, and even =
and * because they have been converted to tokens. For this
reason, you must first enter and RUN the following BASIC
program, called UNTOKEN before using the BASIC line editor
to create the assembler source file., UNTOKEN inhibits BASIC
from tokenizing normal BASIC keywords., Thus BASIC keywords
are not be converted to their corresponding tokens. This
enables the LEA to recognize their untokenized equivalents

in normal text.

When you are finished using the LEA, and you want to enter

normal BASIC programs again, enter the instruction:

SYS 53181
This re-enables BASIC to tokenize its keywords.

0 REM PROGRAM UNTOKEN
100 FOR I = 53100 TO 53191
110 READ X : POKE I,X : S=S+X : NEXT
120 DATA 169,119,160,207,141, 2, 3,140, 3, 3, 96, 32
130 DATA 96,165,134,122,132,123, 32,115, 0,170,240,243
140 DATA 162,255,134, 58,144, 6, 32,121,165, 76,225,167
150 DATA 32,107,169,160, 0,162, 0,189, O, 2,232,201
160 DATA 32,240,248,201, 48,144, 4,201, 58,144,240,153
170 DATA o, 2,201, 0,240, 7,189, O, 2,200,232,208
180 DATA 242,200,200,200,200,200, 76,162,164,169,131,160
190 DATA 164,141, 2, 3,140, 3, 3, 96
200 IF S <> 11096 THEN PRINT "ERROR IN DATA !!" : END
210 sYs 53100 : PRINT "OK"

After you key in this program, you should save a copy on

each diskette on which you will later store assembler source

96

The Machine Language Book of the Commodore 64

programs. Remember to load and RUN UNTOKEN before creating

assembler source programs.

Now enter the earlier sample program, Insert line 180 which
contains .EN. This is a pseudo-instruction which tells the
assembler that this statement is at the end of your source
program, Save the source program on disk with the name

TEST.SRC.

Did you remember to first LOAD and RUN the above UNTOKEN
program? Now you can load the LEA assembler and RUN it. The

following appears on the screen. Respond as requested.

6510 - ASSEMBLER
SOURCE FILE NAME ? TEST

LISTING Y/N 2 Y
PRINTER Y/N ? N

After a short time the message PASS 1 appears on the screen
and the disk drive shows some activity. Now the line numbers
from 100 to 180 appear on the screen, During the second

pass, the listing is displayed:

PASS 2
C000 A2 00 100 LDX #0
Cc002 8A 110 LOOP TXA
C003 9D 00 04 120 STA $0400,X
C006 A9 01 130 LDA #1
Cc008 9D 00 D8 140 STA $D800,X
CO0OB E8 150 INX
C00C DO F4 160 BNE LOOP
COOE 60 170 RTS
180 .EN
LABEL (€002

97

The Machine Language Book of the Commodore 64

When the listing is completed, the LEA assembler asks you if
the generated machine language program should be saved to

diskette. Answer with Y(es).

SAVE Y/N ?2Y

The program is saved to diskette under the name TEST.OBJ on

the diskette (OBJ = OBJect program). Statistics about the

generated code and errors are also displayed:

Cc000 / COOF / O00OF

SOURCE FILE IS TEST.SRC
0 ERRORS

The assembler offers the option of displaying all the

symbols and their values.

SYMBOL TABLE Y/N ? Y
SORT Y/N ? N

LOOP Cc002

You can also specify that the table is to be sorted

alphabetically.

The generated machine language program is now contained on
the diskette with the name TEST.OBJ. There is also a copy of
it in memory, ready to be executed. Now test it out by

entering:
SYS 49152

98

The Machine Language Book of the Commodore 64

The entire character set appears on the screen almost

immediately.

There are a few things about the assembler you should know.
Each line of the source program consists of a line number,
an optional symbol (also called 1label), and a mnemonic
instruction such as LDA, followed by the operands (if
necessary) and comments separated by a semicolon. The
comments may be omitted of course, but we advise you to make
liberal use of these and describe exactly the operations you
intend. Should you lay your program aside and need to use or
change it at a later time, you will be thankful that you

commented it.

The symbols may be maximum of five characters in length. In
addition to the implicit symbol definitions (labels), you
can assign values to symbols directly. This makes programs

easier to understand and easier to read.

In this example, we use symbols for the addresses of the

color and screen memory:

PASS 2
0400 70 VIDEO = $400
D800 80 COLOR = $D800
C000 90 *= $C000
c000 A2 00 100 LDX #0
Cc002 8A 110 LOOP TXA
C003 9D 00 04 120 STA VIDEO,X
C006 A9 01 130 LDA #1
c008 9D 00 D8 140 STA COLOR,X
CO0B E8 150 INX
Cc00C DO F4 160 BNE LOOP
COOE 60 170 RTS

180 .EN

99

The Machine Language Book of the Commodore 64

1f you assemble this program and display the sorted symbol

table, you will see:

COLOR D800 LOOP C002
VIDEO 0400

Line 70 contains a pseudo-instruction = which directs the
assembler to assign the value $0400 to the symbol VIDEO.
Anytime you use the symbol VIDEO, the assembler knows to use

the value $0400 to calculate the operands.

Line 90 contains another pseudo-instruction, *=, It tells
the assembler to begin the assembly process at memory .
location $C000, It is placed at the start of each program.
Using it, you can instruct the assembler to place your code

at any desired place in memory.

What are the advantages of using symbols? There are two main
advantages. First, through the choice of name, the purpose
of an individual memory location can be easily determined
(e.g. COLOR). Second, such a program is easier to change. If
you enter the wrong location of the video RAM, you need only
change the value of VIDEO at the beginning of the program.
All references to this name are then changed. This is even

more useful the more times such a name appears in a program.

A pseudo-instruction, gives processing directions to the

assembler. For example, the pseudo-instruction .BY, tells

100

The Machine Language Book of the Commodore 64

the assembler to place specific values in the machine

language program. You can, for example, store data or text
within your machine language program. The pseudo-instruction

for this is called:

An operand in the range from 0 to 255 must follow the .BY
pseudo-instruction. This operand value is placed at the
current location of the program counter. Using .BY, you can

insert symbols and constants into the program. For example:

.BY 100
.BY S7F
.BY CR

«BY has an additional option., Sometimes, you have to divide
a 16-bit value into two 8-bit values. The operators > and <
allow you to do this. The > symbol denotes the high-byte
(bits 8 through 15) of a 16-bit value, while the < symbol

denotes the low-byte (bits 0 to 7). Here's an example:

100 CONST = SAB3F
110 .BY <CONST
120 .BY >CONST

This program segment places the values $3F and $AB in the

program. These operators can be used for immediate

addressing with the # character, for example:

101

The Machine Language Book of the Commodore 64

130 LDA #<CONST
140 LDY #>CONST

In order to use zero-page addressing, you must prefix
operands with an asterisk, *, If you don't, the assembler
uses absolute addressing. This is not necessary for indexed

addressing which works only with zero-ﬁage addresses.

00BO 100 START = $BO
Cc000 AD BO 00 110 LDA START
C003 A4 BO 120 LDY *START
C005 8D 27 00 130 STA §$27
c008 84 60 140 STY *$60
c00A 24 BO 150 BIT *START

The above example shows you that without the asterisk (lines
110 and 130), an absolute addressing mode, three-byte form
of the instruction is generated. The zero-page addressing
mode is selected by placing the asterisk in front of the
operand, resulting in a two-byte instruction (lines 120, 140

and 150).

Now that you are acquainted with the functions of the LEA
assembler, you can concentrate on programming. On the next
pages you find the ;isting of the LEA assembler and a short
description of the operations and the variables used by the.

program,

Try not to key the listing "blindly". Read the description

of the routines as you go along, and try to understand how

the assembler works. By doing this, you can learn not only

102

The Machine Language Book of the Commodore 64

about the operation of the assembler, but also something

about machine language as well,

You can also order a diskette containing the LEA assembler,
6510 single-Step Simulator and Disassembler. This saves you
the time and effort of keying these programs from the

listings. See ordering instructions in APPENDIX F.

103

The Machine Language Book of the Commodore 64

100 REM 6510 ASSEMBLER

110 PRINT CHR#%(147):PRINT:PRINT:PRINT,"6510 ASSEMBLER":PRIN1:DG=8
120 INPUT"SOURCE FILE NAME "j;SN$

130 IFRIGHT#(SN%,4)=".8RC" THENSN#$=LEFT#$ (SN$,LEN (SN$) -4)

140 DD#="0":REM DRIVE NUMBER

150 INPUTLISTING Y/N "3A$: IFAS<>"Y"THENPM=1:G0TO190
160 PF=4:PG=3
170 INPUT"PRINTER Y/N ";A$: IFA$="Y"THENPG=4

180 OPENPF,PG
190 GOSUBS000:REM BUILD TABLES

200 A=0:AD=49152: PRINT:PRINT: PA=A

210 PRINT"PASS 1":BOSUB4000:PRINT"PASS 2":FF%=0:FE%=0

‘220 OP$=DD#$+": "+8N$+" , SRC"

230 OPENS,DG,0,0P%

240 GETH#8,A%,A$:REM START ADDRESS

250 IFPM=1THENPRINTCHR$ (145),,ZN$

260 F%=0: IFAD>6553STHENPRINT: PRINT: PRINT"MEMORY OVERFLOW!":GOTG1000
270 A=AD:GOSUB3240:PR$=A$+" ":BOSUB2000: IFLEFTS (X$,3) =", EN"THEN1000

280 XX$=LEFT$(X$,1): IFXX$="%"THENPR$=" " LNg="
290 IFXX#$="."ORXX$="#"0ORXX$="="THENGOSUE2900: GOTO380
295 IFXX$=""THENPR$=PR$+" "2 GOTO430

300 ONLMZBOTO3I20

310 SA=0F+AD: PA=AD:LM%=1

320 XX$=LEFT$(X$,3) :FORI=0TONNZ: IFXX$=MN$ (J) THENISO

330 NEXT

340 FL$(1)="A":A%=1:F%=1:60SUR1520: GOTO370

350 GOSUB2400:F%Z=0: IFTZ=5ANDT%(J,9) >OTHENT%Z=9:REM RELATIVE

360 ONTZ%+160SUBS00,600,600,600,600,800,800,800,500,900,600,600,800
370 POKE OF+AD,A

380 AD=AD+A%: IFLEFT#$ (X$,2)="%="THEN4OO

390 LX=AD
400 REM *%xee%%® OUTPUT
410 IFFZ=0THENIFFL#$(0)=" "ANDFL%(1)=" "ANDFL#(2)=" "THEN43IO

420 BS%Z=BSZ+1

430 ONPMGOTO250

440 Y$=LEFTH(Y$+" ",11) :FORI=1TOZ: PRINTH#PF ,FL$ (1) ; s NEX
450 PRINTHPF,PREZINSLNS" "LEFTE(X$+" ",6)YE" "RME

460 GOTO 250

S00 REM ONE-BYTE COMMANDS

510 A%Z=1:A=T%(J,T%4) : IFACOTHENFL% (2)="A":60TO1510

520 GOSUB3I240:PR$=PR$+RIGHT$ (A%,2) +" "1 RETURN

600 REM TWO-BYTE COMMANDS

610 A=T%(J,TZ) : IFA<OTHENFL$ (2)="A": G0OTO1500

620 BOSUB3240:FR$=FR$+RIGHTS (A%, 2)

630 YY¥=YA$: IFLEFTH(YY$,1)="#"THENYY$=MIDE (YY$,2)

640 IFLEFTH(YY®,1)="%"THENYY$=MID$ (YY$,2)

650 A%L=2:IFLEFTH(YY$,1)=">"ORLEFTH(YY$,1)="{"THENYY$=MID$ (YY$,2)
660 AF=LEFTH(YY$,1): IFAS="$"0RA%>"/"ANDA$I": "THENAZ=YY$: GOT06F0
670 SL#=YY$:GOSUR4500

680 AF="%"+HES

690 GOSUB3100

700 IFLEFTH(YA%$,2)="#>"THENA=INT (A/HI)

710 IFLEFTH(YA$,2)="#{"THENA=A—-INT (A/HI) *¥HI

720 IFAXLOTHENFL#(2)="0":F%Z=1:A=0

730 GOSUB3240:POKEOF+AD+1,AL%: PRE=PRE+" "+RIGHT$ ("00"+A% ,2)+" "
740 A=T%Z(J,T%Z) : RETURN

104

The Machine Language Book of the Commodore 64

800 REM THREE-BYTE COMMANDS

810 A%=3

820 A=TZ(J,T%)

830 GOSUEI240: PR$=PR$+RIGHTS (AF,2)

840 A$=LEFTH(YA$,1): IFAS="5"0RAS>"/"ANDAS< " : " THENAS=YAS$: GOTOB70

850 SL$=YA¥:GOSUB4500

860 A$="$"+HES

513 GOSUBZ100: GOSUB3240: PRE=PR$+" “+RIGHTS ("00"+A%,2) +" "+LEFT$
$,2y e n

880 POKEOF+AD+1,ALY%: POKEDOF+AD+2, AH%

890 A=T%(J,T%) : RETURN

900 REM RELATIVE

910 A%=2

920 A=T%(J,T%): GOSUEI240: PRE=PRI+RIGHTS (A%, 2)

930 AF=LEFTH(Y$,1) : IFAS="$"ORA$>" /"ANDAS< " : " THENAS=Y$: GOTOF60

940 SL$=Y#: BGOSUE4500

950 As="$"+HES

960 GOSUBRZF100: IFFL$ (2) ="U" THENA=AD+2

970 DF=A-(AD+2) : IFDF<~12B0RDF >127 THENFL$ (3) ="R":F%=13: DF=0

980 A=DFANDL.0: GOSURI240

990 FRE=FR$+" “+RIGHTS (AS,2)+" "3 POKEOF+AD+1 , A2 A=T% (J, %) : RETURN

1000 PR$=" ": IFF%=0THEN1020

1010 BS%Z=BES%+1

1020 IFAE<AD+OF THENAE=AD+OF

1030 ONPMBOTO1060

1040 FORI=0TOZ: PRINT#FF,FLS (1) ;:NEXT

1050 PRINTHPF ,PR$, ZNS,LNS" “LEFTS (X$+" ", 6)YE" "RMS

1060 CLOSES: INPUT"SAVE Y/N "3 A%z IFAS "YU THEN1130

1070 AS=DD#H+": "+SN$+" . OBI "

1080 AZ=LEN (A$) : POKE183,A%: POKE187,681ANDLO: POKE188,681 /HI

1090 FORI=1TOA%:FOKEGBO+I,ASC (MID$ (A%, 1)) :NEXT:REM FILENAME

1100 A=SA: GOSUBI240: POKE2S1 ,ALY%: POKE252,AH%: REM START ADDRESS

1110 A=AE:GOSUB3240: POKE781,ALY%: POKE782,AH%: REM END ADDRESS

1120 POKE780,251:S5YS65496: REM SAVE

1130 A=PA:GOSUB3240: PA$=A%$: A=AD: GOSUB3240: AD$=A$: A=AD-PA: GOSUB3240

1140 BA$=A%:ONPMGOTO1180

1150 PRINT#PF:PRINT#PF,PA$" / "AD$" / "BAS

1160 PRINTH#PF,"SOURCE FILE IS “SN#+".SRC"

1170 PRINT#PF ,BS%"ERROR (S) ": PRINTHPF

1180 INPUT"SYMBOL TABLE Y/N "3Z3$: IFZ$< "Y' THEN1400

1190 MX=2: IFPG>3THENPRINT#PF ,CHR$ (12) : MX=5

1200 INPUT"SORT Y/N ";Z%:IFZ$="Y"THEN1300

1210 ONPMBOTO1220

1220 MZ=0:P$="":FORI=LLZTOULY

1230 IFLBES$(I)=" “THEN1290

1240 P$=P$+LEBE(1)+" "+HES (1) +" " ML=MZ+1

1250 IFM%<*MXTHEN1290

1260 ONPMGOTO1280

1270 PRINTHPF,P$

1280 PE="":M%=0: IF I »=UL%THEN1400

1290 NEXTI: IFPH< 3" " THEN1260

1300 HI$=CHRS$ (127) +CHRS$ (127) +CHR$ (127) +CHR$ (127) +CHRS (127) :F%=0

:REM SOR1

1310 M%=0:SL$=HI$: FORI=LLLTOULY%: IFLE$ (1) =" " THEN1340

1320 IFLB$ (1) <SLETHENSL$=LES$ (1) :M%=I+1

1330 UL%=1

1340 NEXTI: IFF%Z<MXTHEN1360

1350 F%=0: IFPM=OTHENFRINT#FF

1360 IFMZ=0THEN1400

1370 ONPMGOTO1390

105

The

1380
1390
1400
1410
1420
1500
1510
1520
1600
1610
1620
1630
1640
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2400
2410
2420
247Z0
2440
2450
(YAE)
2460
24870
2480
2490
QBOO

106

Machine Language Book of the Commodore 64

PRINTH#PF ,SLE" “HES$ (M%-1)" vy

LBS$ (MZ~-1)=" " FY%=F%+1:GOTO1310

REM

IFPG=4THENPRINT#PF ,CHR$ (12)

CLOSEPF: END

POKEOF+AD+2,0: REM NOP FILLER

POKEOF+AD+1,0

A=0: PRE=PR$+NP$ (A%) : RETURN

IFLEFT$ (LN$,1) =", "THENI=—1: RETURN

IFMID$ (LN$,4,1)<>" "THENI=NN%+1: RETURN

MN$=LEFT# (LN%,3) s REM LAREL=MNEMONIC?
FORI=0TONNY: IFMN$< >MNS (T) THENNEXT

RETURN

GET#8,A$,B%: IFAS+ES=""THEN2290: REM LEFT ADDRESS
GETH#8,Z1%,12%

ZN=ASC (Z1$+CHRS$ (0)) +HI*ASC (Z25+CHR$ (0))
IN$=RIGHTS(" "+STR$ (IN) ,5)+" "

BOSUB2300: IFFFLTHENRETURN

LNE=" 13 X=" 13 V=11 RME=" "3 X%=0

FORI=OTO3:FL#(I)=" ":NEXTI: IFZ$="%"THEN2190
IFZ$="3 "THEN2280

REM LABEL NAME

IFZ$=" "ORFFZTHENLN$=LEFT#$ (LN$+" ",5) :60TO2120
LN$=LN$+Z$: IFLEN (LN$) =6 THENX%=1: FL$ (0) ="L"
BOSUB2300: GOTD2090

GOSUB1600: IFI<=NNZTHENX$=LN$: LN$=" "1 GOTO2200
X%=ASC (LN$) : IFX%< 6S0RX% >POTHENFLS (0) ="g"

REM OPERATION

GOSUB2300: IFFFLTHENRE TURN

IFZ$43" "THENZ2190

6O0TO2150

BOSUR2300: IFFFLTHENRETURN

IFZ$<»" "THENX$=X$+Z%:60T02180

IFFF%THENRE TURN

IFZ#="3 "THEN2280

IFZ#< 3" "THENZ260: REM OFERAND

GOSUB2300: IFFFLTHENRE TURN

GOTOZZ00

GOSURZ300: IFFFZTHENRE TURN

IFZ$< 3" "THENY$=Y$+Z%: 60TO2250

GOSUE2300: IFFFZTHENRETURN: REM COMMENT

RM$=RM$+Z$: GOTORZ70

X#=".EN":RM$="END ASSUMED":LN#=" upyE="y ZNS=" " RETURN
GET#8,Z%: FF%=Z%="":RETURN

REM DETERMINE ADDRESSING MODE
IFY#=""THENT%=8: RETURN: REM IMFLICIT

YA$=Y$: IFLEFTH (YA, 1) =" ("THENYA$=MID$ (YA$,2)
IFRIGHTS (YA%, 1) =") "THENYA$=LEFT$ (YA ,LEN(YA$) —1)
IFRIGHTS (YA%,3)=") ,Y" THENYA$=LEFT# (YA$,LEN(YA$) -3)
IFRIGHTS (YA%,2) =", Y"ORRIGHTS (YA%,2) =" , X" THENYA$=LEF T$ (YA%,LEN

ZE=Y¥: KE=LEFTH(Y%,1)
IFZ#="A"THENTZ=0: RETURN: REM ACCUMULATOR
IFEF="#"THENTZ=1: RETURN: REM IMMEDIATE
=" ("THEN2600: REM INDIRECT

"' REM ZERO PAGE

LZE=MIDE (YE,2+1F)

IFLEN(Z#) <2THEN2SS0

KE=MIDE (ZF,LEN(Z$)~1,1)

The Machine Language Book of the Commodore 64

2540 IFK$=","THEN2570:REM INDEXED

2550 TY=5

2860 TA=TZ+3%ZFP:RETURN: REM ABSOLUTE OR ZERQO-PAGE

2570 K$F=RIGHT$(Z#$,1): IFKE="X"THENTZ=6: GOTO2560

2580 IFK#$="Y"THENTZ=7:60TD2560

2590 TZ=-1:RETURN:REM SYNTAX ERROR

2600 K#=RIGHT$(Z#,1): IFk$=") "THEN2630

2610 IFRIGHT#{(Z%,2)<=",Y"THEN2590

2620 TZ=11:RETURN

2630 IFMID#(Z$,LEN(Z$)-2,2)=",X"THENT%=10: RETURN

2640 TZ=12: RETURN

2700 IFX$="="THEN273Z0: REM FSEUDO-OFS PASS 1

2710 IFLEFTH(X$,2)="#="THEN2780

2715 IFLEFT$(X$,3)=".BY"THENA%=1: RETURN

2720 A%=0:RETURN

2730 A%Z=0: IFY$="%"THENRETURN

2740 AZ=ASC(LEFTH(LN#$,1)) : IFA%L{6S0RAYL >FOTHENRETURN

2750 AF=LEFT#(Y$,1) : IFA$<>"$"AND (A$<"O"ORAF >" 9") THENRETURN

2760 A$=Y$:GOSURZ100: IFFZTHENMLS (HCZ) =FL#(2) : RETURN

2770 GOSUB3I240:HE$ (HCL) =RIGHT#$ ("0000"+A%$,4) : RETURN

2780 AZ=0:Y1$=LEFT#(Y$,1) 1 IFY1$="$"ORY1$>"/"ANDY 1$< " : " THEN280O
2790 RETURN

2800 A$=Y$:G60SUB3I100: IFFZTHENRETURN

2810 HA=A:GOSUB3240: X%=ASC (LEFTH (LNF+CHR$ (0) , 1)) : IFXZ:64ANDX %91
THENHES$ (HCZ) =A% :
2820 RETURN

2900 IFXX$="="THEN2940:REM PSEUDO-OFS PASS 2

2910 IFLEFTS (X$,2)="%="THEN2990

2915 IFLEFT$ (X$,3)=".BY"THEN2991

2920 FL#%(1)="8"

2930 AY%=0:F%=1:PR$=" ": RETURN

2940 AY%=0

2950 AF=LEFT$(Y$,1)

2960 IFA$<:"#"ANDASC >"$"AND (A$<"Q"ORA$>"9") THENFL$ (2)="8": 6OT02930
2970 SL#=LN#%:F%Z=0:60SUB4500: IFFLTHENFL$ (0)=FL$(2) :FL$(2)=" ":60TO2930
2980 PR#=HE$+" ": RETURN

2990 AZL=0:YZ$=LEFTH(Y$,1): IFYZ$="$"0RYZ$:>"/"ANDYZ$<": "THENIO10
2991 YI$=LEFT$(Y%,1) :LHA=YZI$=">"0RYZI$="<":YA$=MID$ (Y$,1-LHL)
2992 YZ$=LEFT$(YA$,1): IFYZH="$"0ORYZE>"/"ANDYZ$<": "THENHES=YA$: GOTO2994
2993 SL#=YA$:F%L=0:60SUB4S00: HE$="%"+HE®$: IFFATHENFL$ (Q) =F$(2)
sFLE(2)=" "

2994 A$=HE$:GOSUBI100: IFAXLOANDLHZ=0THENA=O: FL$(1)="0"

2995 IFLEFT$(Y$,1)=">"THENA=INT (A/HI)

2996 IFLEFT$(Y#$,1)="<"THENA=A-INT (A/HI) *HI

2998 POKEAD,A:A%=1:G0SUR3240: PR$¥=PRF+RIGHTS (" 00" +A%,2) +" "
s RETURN

3000 FL#$(2)="8":F%L=1:60TO3030

3010 A$=Y#$:GOSURI100: IFFLTHENIOZ0O

3020 AD=A:GOSUBI240:PR$=A$+" "

3030 PR#=PR#$+" ": RETURN

3100 REM CONVERT HEX - DEC AF -> A

3110 Z$=LEFT$(A%$,1): IFZ$="%"THENA$=RIGHT* (A%,LEN(A$) -1) : GOTO3130.
3120 IFZ$E<"O"ORZ$>"9"THENFL$ (2)="8":F%Z=1: RETURN

3130 A=VAL (A%$) : IFA>6S5350RA<OTHENFLE (2)="0":F%=1

3140 RETURN

3150 A=0:L%=LEN(A$) : IFLZ4THENFZ=1:FL$(2)="L" : RETURN

3200 FORI=1TOLZ%:AAZL=ASC(MID$(AX,1))-48

3210 IFAA%ZSODRAAY > THENIFAALI170RAAY 22 THENFZ=1: FL$(2)="8" s RETURN
3220 IFAAYLFITHENARZL=AAZL-7

3230 A=A+AAY*16T (L%-I) : NEXT: RETURN

3240 AHZ=A/HI:AL%=A-AHZL*HI: A$=A% (AHY/16) +A% (AHZAND1S) +A% (ALL/16)
+A% (ALZANDIS)

107

The Machine Language Book of the Commodore 64

3250 RETURN
4000 DIMLE#$(349) ,HE$ (349) ,ML$(349) : HA=AD:REM CONSTRUCT ADDRESS L.IST
4010 FORI=0OTO349:LBE(I)=" YaHES (1) ="0000":MLF(I)=" ":NEXT
4020 OF$=DD#¥+":"+SN$+".SRC"
4030 OPENS,DG,0,0F%
4040 GETH8,A%,AF:LLY=349
4050 IFST<»OTHENCLOSES: END
4060 GOSUB2000: PRINTCHRS$ (145) ,ZN$: IFLN$=""0RLEFT# (LN$,1)=" "THEN4210
4070 X%=ASC(LEFTH(LN¥,1)) : IFXL<650RXL*FO0THEN4210
4080 GOSUR4100:G0OTO4130
4090 LNFEF=LEFTH (LN$+" ",5):REM GENERATE HASH CODE
4100 HC=0:FORI=1T0S
4110 HC%=ASC (MIDF (LN$,I1,1)) s HC=HC+ (HCL/10~-INT(HC%/10)) #1001 (6-1) : NEXTI
4120 HC%=(HC/3I07-INT (HC/307)) *300: RETURN
4130 A=HA:GOSUBRIZ40
4140 IFLEB$ (HCZ) < »" "THEN4 180
4150 LB$ (HCZ) =LN#: HE$ (HCZ) =A%: IFHCY *ULZTHENUL%Z=HC%
4160 IFHCZ<LLZTHENLLZ=HC%
4170 GOTD4210
4180 IFLEF(HCY) =LN$FTHENML$ (HC%Z) ="M":G0T04210
4190 HC%Z=HCY%+1: IFHCZ<350THEN4140
4200 PRINT"SYMBOL TAEBLE FULL":CLOSE8:END
4210 IFX$=".EN"THENCLOSES8:RETURN
4220 AXF=LEFTH(X$,1) : IFXXF=", "ORXXH="%"ORXXF="="THENGOSURZ700: HA=HA+AY
: GO 04060
4230 FZ=0: XX$=LEFT$(X$,3) : FORI=O0TONNY: IFXX¥< >MN$ (J) THENNEXT: GOT04270
4240 GOSUBRZ400
4250 IFTZ(J,T%) »=0THEN4280
4260 IFTZ=SANDTZ(J,9) >=0THENT%=9: GOT04280
4270 FZ=1:HA=HA+1:60TD4060 :
4280 HA=HA+LZ(TZ) : GOTO4060
4500 REM ®xxxkrx® SEARCH FOR LAREL
4510 X%=ASC(LEFTH(SL#$,1)): IFX%LI6SORXL*FOTHENFLS (2)="8": FiL=1:HE$="0000"
s RETHIRM
4520 IFLEN(SLE) *STHENFLF(2)="L"
450 8VE=L N¥: LN$=5L$: GOSURA4090: SLE=LN$: LN$=5Vs$
4540 IFLB®(HCZ)=" "ORHCZ FULUTHENFLS () ="U": F%=1: HE$="0000" : RETURN
4550 IFLB# (HC%Z)« LFEFTHEN4S80
4560 HE$=HE¥ (HC%Z) : IFML$ (HC%Z) < >" "THENFL$ (2)=ML¥ (HC%)
4570 RETURN
4580 HCZ=HCZ%Z+1:G60TD4540
590 Yig=""i1Y2F="":I=1:REM DIVIDE Y# INTO Yi$ AND Y2Ff
4600 IFMIDECY S, 1,1) 45" " THENY1$=Y1$+MIDE (Y$,1,1)
4610 IFISLEN(Y$) THENF%Z=1: RETURN
4620 IFMIDH(YH,1,1)<:", "THENI=I+1:GOTD4600
4630 I=I+1: IFILEMC(YE) THENFYZ=1: RETURN
4640 Y2E=Y2E+MIDE(YE,1,1): IFI=LEN(Y$) THENFYZ=0: RETURM
4650 I=I+1:60T04640
SOO0 READNNYL:HI=256:1.0=255
S010 DIM A (15, MNF(NNL) , TZ (NN, 12) L% (12) JFLECT) NP (3)
FORI=0TO15: READA$ (1) : NEXT
' NFE (1) ="00 ENPE(Z)="00 00 TINPECD) =00 00 00 "
S040 FORI=OTO12: READLZ(I) s NEXT
S?g?UFDRJ=OTDNNZ:READMN$(J):FDRJJ=0TO12:RE&DQ$:IFH$="—1“[HENQ=—!
GO TOEO 70
??f?)ﬁ:g;rDRI=1TDE:X=ASC(RIGHT$(A$,1))—48:X=X+(X}9)%7:A=R+X*IbT
S070 T4(J,JI)=A:NEXT:NEXT: RETURN
6000 DATA S5 :REM NUMEBER OF MNEMOMICS
6010 DATA 0,1,2,73,4,5,6,7,8,9,4,8,C,D,E,F
HO20D DATA 1,2,2,2,2,73 Tl E,2,2,5
7000 DATA ADC,-1,69,65,75,-1,6D,7D.79,-1,~1,61,71,-1

108

The Machine Language Book of the Commodore 64

7010 DATA AND,-1,29,25,35,-1,2D,3D,39,-1,-1,21,31,-1
7020 DATA ASL,0A,-1,06,16,-1,0E,1E,-1,~1,~1,-1,=1,-1
7030 DATA ECC,-1,-1,-1,-1,-1,-1,-1,~1,-1,90,-1,-1,-1
7040 DATA BCS,—-1,-1,-1,-1,-1,-1,-1,-1,-1,80,-1,-1,-1
7050 DATA BE@,-1,-1,-1,-1,-1,-1,-1,-1,-1,F0,~1,-1,-1
7060 DATA BMI,—-1,-1,-1,-1,-1,-1,-1,-1,-1,30,~-1,-1,-1
7070 DATA BIT,-1,-1,24,-1,-1,2C,-1,-1,-1,~1,-1,-1,-1
7080 DATA BNE,-1,-1,-1,-1,-1,-1,-1,-1,-1,D0,~1,-1,-1
7090 DATA BPL,-1,-1,-1,-1,-1,~-1,-1,~1,-1,10,~1,-1,-1
7100 DATA BRK,-1,-1,-1,-1,-1,-1,-1,-1,00,-1,~1,-1,-1
7110 DATA BVC,—-1,-1,-1,-1,-1,-1,-1,-1,-1;50,-1,-1,-1
7120 DATA BVS,-1,-1,-1,-1,-1,-1,-1,-1,-1,70,-1,-1,-1
7130 DATA CLC,-1,-1,-1,-1,-1,-1,-1,-1,18,-1,~1,-1,-1
7140 DATA CLD,-1,-1,-1,-1,-1,-1,-1,-1,D8,-1,-1,-1,-1
7150 DATA CLI,-1,-1,-1,-1,-1,-1,-1,-1,58,-1,-1,-1,-1
7160 DATA CLV,-1,-1,-1,-1,-1,~-1,-1,-1,88,-1,~1,-1,-1
7170 DATA CMP,-1,C9,CS,DS,-1,CD,DD,D9,-1,-1,C1,D1,-1
7180 DATA CPX,-1,E0,E4,-1,-1,EC,~1,-1,-1,-1,—-1,-1,-1
7190 DATA CPY,-1,C0,C4,-1,-1,CC,~1,-1,~1,-1,-1,-1,~1
7200 DATA DEC,—-1,-1,Cé,D6,-1,CE,DE,~1,-1,-1,~1,-1,-1
7210 DATA DEX,-1,-1,-1,-1,-1,-1,-1,-1,CA,~1,~-1,-1,-1
7220 DATA DEY,-1,-1,-1,-1,-1,-1,-1,-1,88,-1,-1,-1,-1
7230 DATA EOR,-1,49,45,55,-1,4D,5D,59,-1,-1,41,51,-1
7240 DATA INC,-1,-1,E6,F6,~1,EE,FE,~1,~1,-1,~1,-1,-1
7250 DATA INX,-1,-1,-1,-1,-1,-1,-1,-1,E8,-1,-1,-1,-1
7260 DATA INY,-1,-1,-1,-1,-1,-1,-1,~1,08,-1,~1,-1,~1
7270 DATA JMP,—1,-1,-1,-1,-1,4C,-1,-1,~1,~1,-1,~1,6C
7280 DATA JSR,-1,-1,-1,-1,-1,20,-1,-1,-1,-1,-1,-1,-1
7290 DATA LDA,-1,A9,AS,ES,-1,AD,BD,E9,-1,-1,A1,B1,-1
7300 DATA LDX,-1,A2,Ab,-1,B6,AE,~1,BE,~1,-1,~1,-1,-1
7310 DATA LDY,-1,A0,A4,B4,-1,AC,BC,~1,-1,-1,-1,~1,-1
7320 DATA LSR,4A,-1,46,56,-1,4E,5E,-1,-1,-1,~1,-1,-1
7330 DATA NOP,-1,-1,-1,-1,-1,-1,-1,-1,EA,-1,-1,-1,-1
7340 DATA ORA,-1,09,05,15,-1,0D,1D,19,-1,~1,01,11,-1
7350 DATA PHA,—1,-1,-1,-1,-1,-1,-1,-1,48,-1,-1,-1,~1
7360 DATA PHP,—1,-1,-1,-1,-1,-1,-1,-1,08,-1,-1,-1,-1
7370 DATA PLA,-1,-1,-1,-1,-1,-1,-1,-1,68,-1,-1,-1,~1
7380 DATA PLP,-1,-1,-1,-1,-1,-1,-1,-1,28,-1,-1,-1,-1
7390 DATA ROL,2A,-1,26,36,~1,2E,3E,-1,-1,-1,-1,-1,-1
7400 DATA ROR,6A,-1,66,76,~1,6E,7E,~1,~1,-1,-1,-1,-1
7410 DATA RTI,-1,-1,-1,-1,-1,-1,-1,~-1,40,-1,-1,-1,-1
7420 DATA RTS,-1,-1,-1,-1,-1,~1,-1,-1,60,-1,~-1,~1,-1
7430 DATA SBC,-1,E9,ES,FS,-1,ED,FD,F9,-1,~1,E1,F1,~1
7440 DATA SEC,-1,-1,-1,-1,-1,-1,-1,~-1,38,-1,-1,-1,-1
7450 DATA SED,-1,-1,-1,-1,-1,-1,-1,-1,F8,~1,-1,~1,~1
7460 DATA SEI,—1,-1,-1,-1,-1,-1,-1,~1,78,-1,-1,-1,-1
7470 DATA STA,-1,-1,85,95,-1,8D,9D,99,~1,-1,81,91,-1
7480 DATA STX,-1,-1,86,-1,96,8E,-1,~1,-1,-1,-1,~1,~1
7490 DATA STY,-1,-1,84,94,-1,8C,-1,-1,-1,-1,-1,-1,-1
7500 DATA TAX,—1,-1,-1,-1,=1,=1,~1,~1,AA,~1,~1,-1,-1
7510 DATA TAY,-1,-1,-1,-1,-1,~1,-1,-1,AB8,~1,~1,~1,~1
7520 DATA TSX,-1,-1,-1,-1,-1,-1,-1,~1,BA,~-1,-1,-1,-1
7530 DATA TXA,-1,-1,-1,-1,-1,-1,-1,-1,86,-1,~1,~1,-1
7540 DATA TXS,-1,-1,-1,-1,-1,-1,-1,-1,94,-1,-1,-1,-1
7550 DATA TvA,-1,-1,-1,-1,-1,-1,-1,-1,98,-1,-1,~1,-1

109

The Machine Language Book of the Commodore 64

Description of the 6510 assembler and the important variables.

100 - 190 Display title, read source file name into $SN,
prompt for assembly listing. Variable DG is set
to the device number for listing depending on
the answer, The variable PM determines if the
listing is wanted or not. Call routine to
initialize the variables with GOSUB 5000.

200 - 460 Main loop of the program. Line 210 performs pass
1l as a subroutine (GOSUB 4000). Source program
file opened for reading from disk. If listing is
not required, display only the line number $2ZN
(line 250). Variable for printer output, PRS, is
constructed. Line 320 checks for legal instruc-
tions, Set error flag if illegal instruction and
place BRK instruction at that location. Line 350
determines addressing mode (GOSUB 2400).

Determine direction of branch for relative
addressing mode. Call subroutine from line 360
to build string for printing the listing
(depending on addressing mode and length of
instruction). Write generated code to memory
from line 370. Increment program counter in line
380. Print listing in lines 400 thru 460. If
error is found, increment error counter in 1line
420, Display complete assembler source statement
in line 450.

500 - 520 Handle one-byte instructions, Variable A% is set
to the number of bytes and the instruction code
is determined by using T%. A negative valve
indicates that this instruction cannot use this
addressing mode. In this case, branch to 1510,
to insert a BRK instruction (zero) instead.
Otherwise, convert the opcode to hex and place
in the print string.

600 - 740 Handle two-byte instructions, Determine opcode
in line 610. Place opcode in print string in
line 620. Check for immediate addressing, oper-
ators < and > and zero-page addressing (denoted
by "*"). Determine if operand is number (hex or
decimal) in line 660. If not, get value of the
label in line 670 (GOSUB 4500). Gonvert value of
operand to hex. Modify the value according to
the operators < and > in line 700 and 710. Range
check for value greater than 255 in line 720.
Insert value in memory and add to the print
string.

800 - 890 Handle three-byte instructions similar to two-

byte instructions above. Calculate offset and
check for legal address range in line 970. If

110

The Machine Language Book of the Commodore 64

illegal, display "R" (range) error and set
offset to zero. Convert negative values to two's

complement in line 980. Insert the value in
memory and add to print string.

1000 - 1420 Execution is transferred here when the assembly
is done. Display 1last line of assembly. Prompt
user to save generated code to disk. If yes,
setup filename, starting and ending addresses
call operating system SAVE routine with SYys.
Display range and length of the generated code.
Prompt for symbol table display. Sort into
alphabetical sequence in lines 1200-1400.

The following are the subroutines which are called from the

main routine and perform such operations as number
conversion.

1500 - 1520 Output one or two zero bytes if an error was
detected during the assembly.

1600 - 1640 Determine if first field is a mnemonic for an
instruction or a label. If it is an instruction,
assign to variable I the index of that
instruction in the assembler's internal tables.

2000 - 2300 Read a source program line from disk and
separate into line number, label, instruction
mnemonic, operand, and comments. The routine at
2300 reads one byte from disk into the variable
2$. Flag FF% is set if the byte is zero (end-of-
line marker). The first two bytes, which contain
the link address, are not used., If both are
zero, however, the end of the program has been
reached and ".EN" in indicated. Otherwise, the
line number is obtained from the next two bytes.
Find next field by searching for first blank or
the end-of-line. If a semicolon is found, the
text following is assigned to the variable as
comments., Otherwise, the variable 2ZN$ contains
the line number, LN$ contains the label name, X$
contains the instruction mnemonic, Y$ contains
the operands, and; RM$ contains the comments.

2400 - 2460 Determines the addressing mode of an
instruction. Check for characters "(",)", ","
and "X" and "Y". Immediate addressing mode is
recognized by "#", and zero-page addressing by
"k (yariable ZP, line 2510). Addressing mode is
indicated by variable T% as value between zero
and twelve. A negative value indicates an
illegal addressing mode.

111

The Machine

2700 2820
2900 2998
3000 3030
3100 3230
3240 3250
4000 4280
4500 - 4650
5000 - 5070
6000 - 7550

112

Language Book of the Commodore 64

Handles the pseudo-instructions "=", "=*", and
".,BY"., Called during pass 1 and is used for such
things as label definition.

Handles the same instructions as the previous

routine, but for pass 2. This routine places the
codes for ".BY" commands in memory.

Calls the following routines for number conver-
sion and is used to initialize the print string
with the address of the program counter.

Convert a hex number in A$ to a decimal number
in A.

Convert a decimal number in A to a hex number in
AS. AL% and AH% contain the low and high bytes,
respectively.

Perform pass 1 of the assembly. Performs label
searching and assigning their values. Also dis-
plays the line numbers (line 4060). A hash-code
procedure is used for symbol table to speed
searching using variable LB$(). The corres-
ponding hex code is placed in HES$(). The length
of each instruction is determined from the
addressing mode, so that the labels can be
assigned the correct values. Check for duplicate
labels. Increment the program counter after the
determining the address mode T% using the field
L%() with the corresponding length of each
address mode,

Called during pass 2 to determine the value of
the label passed in SL$. If the label is not
found, an error flag is set, otherwise the hex
value is returned in HES.

Initialize all variables from the following DATA
statements.

DATA statements for the converting from decimal
to hex, instruction lengths for different
addressing modes, instruction mnemonics and
corresponding operation codes and allowable
addressing modes.

The Machine Language Book of the Commodore 64

The following describe the usage of the major var1ables of
the assembler.

SN$ Contains the name of the source program
(without suffix ",SRC"). The machine code
produced is saved under the same name, with the
suffix ".0BJ".

DD$ Contains the drive number.

PG Contains device number of the output device for
the listing; 3 = screen, 4 = printer,

PM Flag for ignoring printer output (=1).

A actual address value

AD immediate program counter during the assemblyl

NS line number being processed

LN$ label name

X$ instruction mnemonic

Y$ operand

RMS$ comments

T% address mode (zero to twelve)

OF offset for storage of generated code (0=not used)

A% length of instruction

AS$ hex representation of the actual address A

SL$ label to search for. Must contain the name of

the label being searched for when calling 4500.

HES hex value of the label

LO constant 255

HI constant 256

DF address offset (difference) for relative add-
ressing

BS% error counter

MX number of labels per line for output of symbol
table

HIS "greater" label namé for sorting

113

The Machine Language Book of the Commodore 64

PR$
MN$
7$

NN%

X%
ZP

HA

F%, FF%
HC, HC%
FL$(3)
LB$(349)
HES$ (349)

T%(55,12)

MN$ (55)

114

string for output of a print line in the listing
mnemonic

character from disk

number of mnemonics (op codes)

ASCII code
flag for zero-page addressing

value of a label (during pass 1)
error flags

hash code

error codes
table of labels

table of corresponding values for labels (in hex
code)

table of opcodes and address modes. The first
index is the instruction word, the second index
is the addressing mode.

table of instruction words in alphabetical
order.

The Machine Language Book of the Commodore 64

6. A Single-Step Simulator for the 6510

If you are still unclear as to how certain machine language

instructions work, here's a tool that lets you observe

see the results of each instruction right on the screen.,

tool is called a SIMULATOR. As the name

simulates the operation of the 6510 microprocessor. When

RUN the SIMULATOR,

the
The
it

you

it displays the actions and results of an

instruction as if that instruction were really being

executed,

The SIMULATOR displays the following screen:

PC

0000

AC XR YR SR SP NV-BDIZC
00 00 00 20 FF 00100000

Here are the abbreviation used in the display:

ONHOD<

program counter
accumulator

X register

Y register
status register
stack pointer
negative flag
overflow flag
break flag
decimal flag
interrupt flag
zero flag

carry flag

Beneath the abbreviations are the contents of each register.

You can change the contents of any register or flag from the

115

The Machine Language Book of the Commodore 64

keyboard. To change the contents, press the appropriate
letter as outlined below. If you press the letter of a flag,
then that flag in "inverted". If you press the letter of a
register, the screen prompts you for the change. Key in tle
new value using a legal hexadecimal value and press the
<RETURN> key. The new value replaces the old and the display
is updated with the new coﬁtents. Below is a description of

the keys and their respective contents:

P Displays the current contents of the program counter.
After changing it, the new value is displayed and the
instruction located at this new address is disassembled
and also displayed.

A The contents of the accumulator are displayed. You can
alter the contents by keying in the new value. After
pressing <RETURN>, the new value appears in the register
display.

X The contents of the X-register are displayed. You can
alter the contents by keying in the new value. After
pressing <RETURN>, the new value appears in the register
display.

Y The contents of the Y-register are displayed. You can
alter the contents by keying in the new value, After
pressing <RETURN>, the new value appears in the register
display.

S The contents of the stack pointer are displayed. You can
alter the contents by keying in the new value. After
pressing <RETURN>, the new value of the stack pointer
appears in the register display.

The status register SR cannot be changed directly. Instead,
you have to change the individual flags which comprise the

status register. If a flag is changed, the value of the

116

The Machine Language Book of the Commodore 64

status register in the display is automatically changed as

well,

N By pressing N, the value of the Negative flag is
inverted: 1 becomes 0 and vice versa. At the same time, the

contents of the status register are changed
correspondingly, as already mentioned.

V By pressing V, the value of the ovVerflow flag is inverted
as above.

B By pressing B, the value of the Break flag is inverted as
above.

D By pressing D, the value of the Decimal flag is inverted
as above.

I By pressing I, the value of the Interrupt £flag is
inverted as above.

Z By pressing %, the value of the Zero flag is inverted as
above.

C By pressing C, the value of the Carry flag is inverted as
above.

The most important function of the simulator is performed by
pressing the space bar. By pressing the space bar, the
machine language instruction pointed to by the program
counter is executed., As the name simulator implies, this
instruction is not directly executed by the processor.
Instead it is simulated by the progfam. The register
contents and flags are altered just as they would be if the

microprocessor had executed the instruction. After pressing

the space bar, the new contents of the registers and flags

are displayed; the next instruction to be executed is

117

The Machine Language Book of the Commodore 64

disassembled and displayed; the new value of the program

counter is displayed.

Below is an example, simulating the execution of a routine
“contained in the operating system. First set the program
counter to SA81D by pressing P and entering A81D as the new

contents of the program counter. The following is displayed:

PC AC XR YR SR SP NV-BDIZC
A81D 00 00 00 20 FF 00100000

A81D 38 SEC

Press the space bar to simulate the execution of this

instruction. The result appears below:

PC AC XR YR SR SP NV-BDIZC
A81E 00 00 00 21 FF 00100001

ABlE A5 2B LDA $2B

After the instruction is executed, the carry flag is set.
The value of the status register is automatically changed to

$21. The program counter is incremented by one to SAS81E.

This location contains an LDA instruction. Press the space
bar to execute this instruction. Here's what you'll see on

the screen:

118

The Machine Language Book of the Commodore 64

PC AC XR YR SR SP NV-BDIZC
A820 01 00 00 21 FF 00010001

A820 E9 01 SBC #s$01

The accumulator has been loaded with the contents of memory
location $2B, which contains the value 1. Notice that the N
and Z flags remain clear because the value loaded was
neither zero nor negative. The program counter now stands at
$A820, two bytes further. The instruction at this location
is SEC #$01 - subtract $01 from the contents of the
accumulator. Press the space bar again to see the simulated

results of the SBC instruction:

PC AC XR YR SR SP NV-BVIZC
A822 00 00 00 23 FF 00100011

AB22 A4 2C LDY $2C

After the value $01 is subtracted from the contents of the
the accumulator (also 1), the result appears in the
accumulator. Something happened to the flags. The zero flag
is set, indicating that the result of the operation of is
zero, The carry flag is also set, This tells us that
underflow did not occur during the subtraction. The next
instruction at address $A822 is LDY $2C. Press the space bar

to get the following display:

PC AC XR YR SR SP NV-BDIZC
A824 00 00 08 21 FF 00100001

A824 BO 01 BCS $A827

119

The Machine Language Book of the Commodore 64

The Y-register contains $08 and the zero flag is cleared.
The instruction at address $A824 is a conditional branch.
Can you tell beforehand if this branch will be executed? The
branch will take place if the carry flag is set. Since the
carry flag is set, the branch will take place. Confirm this

by pressing the space bar:

PC AC XR YR SR SP NV-BDIZC
A827 00 00 08 21 FF 00100001

A827 85 41 STA $41

The program counter is now pointing to $A827, not $A826 has
the carry flag been clear. Notice that the flags are not
changed by the branch instruction. The next instruction
stores the contents of the accumulator in memory location

$41, Press the space bar again:

PC AC XR YR SR SP NV-BDIZC
A829 00 00 08 21 FF 00100001

A829 84 42 STY $42

The STA instruction does not change any of the flags. The
next instruction, STY $42, also has no affect on the flags.

Press the space bar:

PC AC XR YR SR SP NV-BDIZC
A82B 00 00 08 21 FF 00100001

A82B 60 RTS

The next instruction is an RTS. You can stop the simulator

120

The Machine Language Book of the Commodore 64

here. The great advantage of a simulator is that you can see
exactly what each instruction does at your own pace. You can
change the contents of the registers and flags at your
discretion before the execution of each instruction to see
how the processor reacts. You can also set the program
counter back to the same instruction after its execution and
re-execute it again with different registers or flag values.

It becomes a great learning tool.

A simulator also allows you to advance the program counter
to the next instruction without executing the previous one.
You can do this by pressing the "cursor down" key. For
example, if you come to a instruction such as STA or INC
which overwrites important operating system areas of memory,

you risk crashing your computer,

For this reason, instructions affecting memory are normally
not executed., If these types of instructions are necessary
to test your program correctly, (for example if your program
depends on the contents of a specific memory location), then
you can specify that the program actually execute such
commands. To do this, press the E key. The prompt ACTUAL
SIMULATION? Y appears on the screen., If you press <RETURN>,
then all instructions which write to memory are actually
executed. If you respond with N(o) instead of Y¥Y(es), you can

turn this option off.,

The simulator also allows you to view and alter the contents

121

The Machine Language Book of the Commodore 64

of memory location, To do this, press the M key. The prompt

ADDRESS ?2**** appears on the screen. Enter the desired

memory location and press <RETURN>. The current contents of
that location are displayed on the screen. You can press
<RETURN> to leave the contents unaltered, or key in a new
value to change the contents. Changes are accepted only if

ACTUAL SIMULATION was previously selected with E.

The next example describes the operation of the stack. The
BRK instruction is used to illustrate the stack operation.
Start the simulator by typing RUN. Enter E to select actual
simulation mode, and set the program counter to $0002. Next
change the contents of memory location $0002 to $00. $00 is
the instruction code for the BRK instruction. Everytime. a
BRK instruction is executed, the simulator's B flag is set.

The following appears on the screen:

PC AC XR YR SR SP NV-BDIZC
. 0002 00 00 00 20 FF 00100000

0002 00 BRK

To better illustrate the stack operations, place unique
values into the accumulator, X and Y registers. You can do
this by press the A, X and Y keys and typing in new values
for the coresponding registers. We have altered the contents

of the registers to the values displayed on the next page:

122

The Machine Language Book of the Commodore 64

PC AC XR YR SR SP NV-BDIZC
0002 22 44 88 20 FF 00100000

0002 00 BRK

If there is no BRK instruction at address $0002, then press
M and enter the address $0002. The contents of memory
location 2 appears, Alter the contents to $00 (the operation
code for the BRK instruction). Now the BRK instruction is
displayed on the screen as shown above. Press the space bar

and observe the display:

PC AC XR YR SR SP NV-BDIZC
FF48 22 44 88 34 FC 00110100

FF48 48 PHA

When a BRK instruction is encountered, the processor takes

several actions:
1) The B and I flags are set.
2) The contents of the program counter (two bytes) and

the status register are saved onto the stack.

3) The stack pointer is decremented by three, in this
case from SFF to S$FC.

4) The program counter is loaded with the contents of
addresses SFFFE and $FFFF (which contains $FF48).
SFFEE and $FFFF contain the BRK vector which is the

address of a routine which always handles a BRK
interrupt.

The instruction at this location is PHA. This instruction
places the contents of the accumulator onto the stack. Press

the space bar again, You will see this:

123

The Machine Language Book of the Commodore 64

PC AC XR YR SR SP NV-BDIZC
FF49 22 44 88 34 FB 00110100

FF49 8A TXA

The contents of the accumulator is placed on the stack and
the stack pointer is automatitcally decremented. Next the
contents of the X-register is copied to the accumulator with

the TXA instruction. Press the space bar again.

PC AC XR YR SR SP NV-BDIZC
FF4A 44 44 88 34 FB 00110100

FF4A 48 PHA

The flags are not changed because the value in the X-
register is neither zero nor negative. The PHA instruction
pushes the contents of the accumulator on the stack again.
Press the space bar once more.

]

PC AC XR YR SR SP NV-BDIZC
FF4B 44 44 88 34 FA 00110100

FF4B 98 TYA

Notice that stack pointer is again decremented. Now the
contents of the Y-register is placed in the accumulator with
the TYA instruction. This time, however, the N flag is set

because the value in the Y register is negative (greater
than $7F). This is displayed:

PC AC XR YR SR SP NV-BDIZC

FF4C 88 44 88 B4 FA 10110100

FF4C 48 PHA

124

The Machine Language Book of. the Commodore 64°

The PHA instruction pushes the contents of the accumulator

onto the stack again. Now here's a new instruction.

PC AC XR YR SR SP NV-BDIZC
FF4D 88 44 88 B4 F9 10110100

FF4D BA ’ TSX -

The TSX instruction transfers the contents of the status

register to the X-register.

Notice that you have saved all of the registers bnté the
stack in this order: Program Counter and Status register
(saved by BRK), Accumula;or, X-register and Y-register.

Now let's simulate the instructions at a different‘part of
the operating system. These instructions resfore the
registers that we just saved so we can further see the

operation of the stack.

Before simulating these instructions, set the register
values to zero. Then you can observe as the values change to
see how the register contents are restored. You can do this

by altering the A, X and Y registers to zero.

Next set the program counter to $EA81. The display should
look like this:

PC AC XR YR SR SP NV-BDIZC
EA81 00 00 00 B4 F9 10110100

EA81 68 PLA

© 125

The Machine Language Book of the Commodore 64

The machine language routine at $EA81 restores all of the

registers and continues execution at the point just before

the BRK interrupt occurred.

When the PLA instruction is executed, the data at the top of
the stack is placed into the accumulator. The data is $88,

which is the original contents of the Y-register above.

PC AC XR YR SR SP NV-BDIZC
EA82 88 00 00 B4 FA 10110100

EA82 A8 TAY

This instruction copies the value in the accumulator to the

Y-register:

PC AC XR YR SR SP NV-BDIZC
EA83 88 00 88 B4 FA 10110100

EA83 68 PLA

Now pull the next value from the stack into the accumulator
with the PLA instruction and transfer it to the X-register.

Press the space bar to see the results:

PC AC XR YR SR SP NV-BDIZC
EA84 44 00 88 34 FB 00110100

EA84 AA TAX

Notice that each time a value is taken off the stack, the

stack pointer is incremented by one. Press the space bar

126

The Machine Language Book of the Commodore 64

again:

PC AC XR YR SR SP NV-BDIZC
EA85 44 44 88 34 FB 00110100

EA85 68 PLA

The original contents of the accumulator are now pulled from
the stack., Press the space bar. The next display looks like

this:

PC AC XR YR SR SP NV-BDIZC
EA86 22 44 88 34 FC 00110100

EA86 40 RTI

All of the registers have been restored and the stack
pointer again points to the value to which it pointed after
the BRK instruction. When using the stack, the important
thing to keep in mind is to pull the values off of the stack

in the reverse order that you pushed them on. The "last in--

first out" principle characterizes this procedure.

Now we can execute the RTI instruction which returns us to

the original interrupted program,

PC AC XR YR SR SP NV-BDIZC
0005 22 44 88 20 FF 00010000

0005 91 B3 STA ($B3),Y

The status register is returned to its original value and

127

The Machine Language Book of the Commodore 64

the program counter points to the instruction after the BRK

instruction.

The simulator is the ideal tool for testing your programs.
Here you can see, step by step, if the processor really’does
what you had intended. Debugging, always a tricky procedure,
is much easier with the simulator. Beginners, who are nbt be
acquainted with all of the addressing modes or who may have.
problems understanding the flag settings, find the simulator
especially helpful. The listing of the simulator prbgrém
appears on the next pages. Following the listing is a short
description of the individual routines and the variables

used by the program.

128

The Machine Language Book of the Commodore 64

100 PRINT" {CLR3 {WHT>{C/DN}™" 6510 SINGLE-STEF SIMULATOR"
110 PRINT" "

120 PRINT" ; v ——

130 PRINT" I PC | AC XR YR SR SP mv -BDIZC 1"

140 PRINT" I 1 i

150 PRINT" v -+ ' a4

160 FF=255:HI=256:UL=2116:5C=2115-1: SP=FF

170 DIM MN$(FF) ,0P(FF) ,AD(FF) ,SP(FF) ,H$(15)

180 FORJ=0TO15:READHS$ (J) : NEXT

190 FORJ=0TOFF:READMNS$(J) ,0F (J) ,AD(J) : NEXT

200 REM DISPLAY REGISTERS .

fg?%fRFNT“{HDME}CC/DN}{C/DN}{C/DN}CC/DN}{C/DN}{C/RT}{C/RT}{D/RT}CC/R1}
13y)

215 IFPC>=ULTHENPC=PC-UL

220 A=PCi1GOSUB2290: PRINT"{C/RT3{C/RT3";

230 A=AC:GOSUB2320:PRINT" {C/RT3";

240 A=XR:GOSUB2I20: PRINT"{C/RT3}";

250 A=YR:GOSUB2320: PRINT" {C/RT>";

255 GOSUBF00:REM SR

260 A=SR:GOSUB2320: PRINT" {C/RT>";

270 A=SP:GOSUB2320: PRINT" {C/RT>{C/RT}";

280 PRINTCHR¥ (48+N) ;

290 PRINTCHR#(48+V) ;

300 PRINT"1";

310 PRINTCHR$ (48+B) ;

320 PRINTCHR¥(48+D);

330 PRINTCHR#(48+1);

340 PRINTCHR¥(48+2);

350 PRINTCHR#(48+C)

360 PRINT" {C/DNJ{C/DN3}{C/DN2} {C/DN}{C/DN} {C/LFZLC/LFY

€C/LF3{C/LF3{C/LF}{C/LF}{C/LF3{C/LF3}{C/LF3}{C/LF}{C/LF}{C/LF}{C/LE} {C/LF}

{C/LFI(C/LF3}(C/LF3{C/LF3";

400 GETT#H: IFT$=""THEN40O

405 IF T$=" "THEN1100:REM SIMULATION

410 IFT#$="P"THENPRINT"PC ";:A=PC:BOSUBRZ90: INFUT"{C/LF}{C/LF} {C/LF?

{CALFI (L/Lr MC/LF3 " ; A% GDSUB 380: PC=0

411 IFT$—“P"THhN1000

420 IFT#$="A"THENT#="AC":A=AC: GOSUBI40: AC=A: GOTO2Z00

430 IFT#H="X"THENT$="XR":A=XR:GB0SUBI40: XR=A: GOTO200

440 IFT#$="Y"THENT$="YR":A=YR: GOSUBS40: YR=A: GOTOZ200

450 IFT$="S"THENT$="SF":A=5F:GOSURS40: SP=AR:G0OTO200

460 IFT#="NoTHENN=1-N:GOTO200

470 IFT$= ENV=1-V: G0OTO200

480 IFTH=" HENE=1-B: GOTOZ00

490 IFT$="D"THEND=1-D:GOTOR200

S00 IFT$="I"THENI=1-1:G0TO200

10 IFT$="Z"THENZ=1-Z:G0T0O200

520 IFT$="C"THENC=1-C:GOTO200

525 IFT#$="{C/DN}"THENS=F:E=FP:FC=P:(0T0O1010

G927 IFT$="M"THENI0OO

528 IFT$="E"THENI100

G530 GOTO400

540 PRINTTS" "3:608UBZ2IZ0: INPUT"{C/LFX{C/LF3CC/LFI{C/LFY " s A%

£ 60702380

F00 SR=N#*128+V*64+32+B*#16+D#B+I#4+7%2+C: RETURN

P10 N=SGN (SRAND128) : V=8GN (SRANDA4) : : B=SGN (SRAND 16) : D=56N (SRANDS)

920 I=SGN(SRAND4) : Z=5GN (SRAND2) : C=SRAND 1 : RE 'URN

780 N=SGN(ACAND128) : Z=1-86N (AC) : REM FLAGS

129

The Machine Language Book of the Commodore 64

990 PC=PC+1+L

1000 S=PC:E=PC

1010 PRINT"(HOME}(C/DN}(C/DN}{C/DN}€C/DN}(C/DN}{C/DN}CC/DN}€C/DN}"
: GUSUR2040: GO'T 020

1100 A=DP(PEEK(PC)) L=0: IFA=0THENS?0

1110 DNAGOTD!2OO 1210,1220, 1230, 1240, 1250, 1260, 1270, 1280, 1290, 1 300,
1310,1320,1330
1115 A=A-14
1120 ONAGOTD1340,1350,1360,1370,1380,1390,1400,1410,1420,1430,1440,
1450,1460,1470
1125 A=A-14
1130 ONAGOTO1480,1490,1500,1510,1520,1530,1540,1550,1560,1570, 1580,
1590,1600,1610
1135 A=A-14
1140 ONAGDTO1620,1630,1640,1650,1660,1670,1680,1690,1700,1710,1720,
1730,1740,1750
1150 BOTO200
1200 IFDTHEN1205:REM ADC
1201 GOSUB1900:V=1-SBN (ACAND128) : AC=AC+OP+C: C=— (ACHFF)
1202 AC=ACANDFF : N=8BN (ACAND128) : V=VANDN: GOTO980
1205 GOSUB1900: AC=VAL (H$ (AC/16) +HE (ACAND1S)) : OP=VAL (HF (OF/16) +H$
(DPAND15))
1206 AC=AC+OP+C:C=—(AC>99) : IFAC *9ITHENAC=AC~100
1207 A$=MID$ (STR$ (AC) ,2) : GOSURZI90: AC=A: GOTO9BO
1210 REM AND
1211 BOSUE1900: AC=ACANDOP: GOTO980
1220 BOSUR1900: A=0P*2: C=— (A>FF) : A=AANDFF : GOSUR1850
1221 IFAD(PEEK (PC))=4THENAC=AC*2: C=— (AC>FF) : AC=ACANDFF : GOTOS0
1223 N=SGN (OPANDFF) : Z=1~SGN (OF) : GOTO990
1230 REM BCC
1240 REM BCS
1241 FL=C:B0TO1800
1250 REM BEQ
1251 FL=Z:BOTO1800
1260 REM BIT
1261 GOSUB1900:N=SGN (OPAND128) : V=SGN (DPAND&4) : Z=1-SGN (OPANDAC)
: BOTO990
1270 REM BMI
1271 FL=N:B0OTO1800
1280 REM BNE
1281 FL=1-7:60TO1800
1290 REM BPL

1300 REM BRK
1301 PC=PC+2: IFPC>=ULTHENPC=PC-2 g
S PL

1302 PH=INT(PC/HI) : PL=PC-PH¥*HI: SP (8P)=FH: SF=SP—-1ANDFF: SF (
s SP=GP-1ANDFF

1303 B=1:1=1:G0SUBF00: SP (SP) =SR: SP=5F—1ANDFF : PC=FEEE (&55.34)
+HI#PEEK (65535)

1304 GOTOL1000

1310 REM BVC

1311 FL=1-V:60TO1800

1320 REM BVS
321 FL=V:GOTO1800

1330 REM CLC

1331 C=0:60T01800

1340 REM CLD

1341 D=0:60T0990

1350 REM CLI

1351 I=0:G0T0?90

1360 REM CLV

1361 V=0:60T0O990

1370 REM CMP

130

The Machine Language Book of the Commodore 64

1371 GOSUB1900: A=AC-0F

1372 N=SGN(AAND128) : Z=-(A=0) : C=- (A>=0) : GOTOFI0

1380 REM CPX

1381 GOSUB1900: A=XR-0P:GOTO1372

1390 REM CPY

1391 GOSUB1900: A=YR-0P:G0OTO1372

1400 REM DEC

1401 GOSUER1900: A=0P—-1ANDFF: GOSUR1850

1402 GOTO1442

1410 REM DEX

1411 XR=(XR-1)ANDFF:(50T01452

1420 REM DEY

1421 YR=(YR-1)ANDFF:G60T01462

1430 REM EOR

1431 GOSUR1900: A=0:FORJ=7TOOSTEP-1: EX=21J:A=2#A- ((OPANDEX) <
(ACANDEX)) : NEX1

1432 AC=A:GOTOI80

1440 REM INC

1441 GOSUR1200: A=0P+1ANDFF: GOSUE1850

1442 N=SGN(AAND128) : Z=1-SGN(A) : GOTO9?90

1450 REM INX

1451 XR=(XR+1)ANDFF

1452 Z=1-86N(XR) : N=SGN (XRAND128) : GOTO970

1460 REM INY

1461 YR=(YR+1)ANDFF

1462 Z=1-86N(YR) : N=5GN (YRAND128) : GOTO990

1470 REM JMP

1471 GOSUER1200: PC=AD: GOTO1000

1480 REM JSR

1481 A=PC+2:FH=INT (A/HI) : PL=A-PH*HI : SP (SP) =PH: SP=6FP-1ANDFF : 5P (SP) =PL

: SP=5P-1AaNDFF
1482 PC=FEEK (PC+1)+PEEK (FC+2) *HI: GOTO1000
1490 REM LDA
1491 GOSUR1200: AC=0F: GOTO80
1500 REM LDX
1501 GOSUER1900: XR=0P:G0OTD1452
1510 REM LDY
1511 GOSUR1%200: YR=0F:G0T01462
1520 REM LSR

1521 IFAD(PEEK (PC)) < >4THEN1524
1522 AC=AC/2
1523 C=-(ACL *INT (AC)) : AC=ACANDFF: GOTO980

1524 GOSUER1900: A=0F/2: C=— (A< *INT (A)) : A=AANDFF : GOSUE 1850
1525 G0OTO1442

1530 REM NOP

1531 GOTO990

1540 REM ORA

1541 GOSURBR1900: AC=ACOROP: GOTO9B0

1550 REM FHA

1531 8P (SP) =AC: SP=8F~1ANDFF: GOTO990

1560 REM FHF

1561 GOSURF00: SF (SF) =6R: 8P=SF-1ANDFF : GOT0990

1570 REM FLA

1571 SF=(SF+1)ANDFF: AC=SF (SF) : GOTO?80: REM SE! FLAGS
1580 REM PLP

1581 SF=(SFP+1)ANDFF: SR=8F (8P) : GOSUR?10: GOTUI90

1590 REM ROL

1591 IFAD(FEEK (FC)) =4THENAC=AC*2+C: GOTO1S2:

1592 GOSUR1900: A=0P*2+C: C=—(A:FF)

131

The Machine Language Book of the Commodore 64

1593 A=AANDFF: GOSUR1850

1594 G0TO01442

1600 REM ROR

1601 IFAD(PEEK (PC))=4THENAC=AC/2+128%C: GO0TO1523

1602 GOSUB1900:A=0P/2+128%C:C=-(A<>INT (A)) :GOTO1593
1610 REM RTI

1611 SP=SP+1ANDFF:8R=58P (SP) : GOSUR?10: GOTO1621

1620 REM RTS

1621 SP=SP+1ANDFF:A=8P (SP) : 8P=8P+1ANDFF : PC=A+8P (SP) ¥*HI1: GOTO990
1630 IFDTHEN1635: REM SBC

1631 GOSUR1200: V=8GN (ACAND128) : AC=AC~-0P—-1+C: C=~ (AC>=0)
1632 AC=ACANDFF : N=SBN (ACAND128) : V=VAND1~-N: GOTO980

1635 GOSUB1200: AC=VAL (H$ (AC/16) +HF (ACAND1S)) : OFP=VAL (HE (0P /16) +H$
(OPAND15))

1636 AC=AC-0P+C—1:C=-(AC»=0) : IFAC<OTHENAC=AC+100
1637 A$=MID$ (STR$(AC) ,2) : GOSUB23I90: AC=A: GOTOISO
1640 REM SEC

1641 C=1:60T0O990

1650 REM SED

1651 D=1:G0TDI90

1660 REM SEI

1661 1=1:GB0T0O990

1670 REM STA

1671 GOSUB1900: A=AC: GOSUR1850

1672 GOTO990

1680 REM STX

1681 BOSUR1900: A=XR:GOSUB1850

1682 GOTO990

1690 REM STY

1691 GOSUB1900:A=YR:GOSUR1B50

1692 GOTO990

1700 REM TAX

1701 XR=AC:GOTO1452

1710 REM TAY

1711 YR=AC:GOTD1462

1720 REM TSX

1721 XR=SP:B0T01452

1730 REM TXA

1731 AC=XR:GOTO980

1740 REM TXS

1741 SP=XR:GOTO990

1750 REM TYA

1751 AC=YR:GOTO980

1800 REM BRANCH COMMANDS

1810 IFFL=0THENL=1:G0TO990

1820 GOSUE1985:GOTO1000

1850 REM POKE

1870 IFAD<HIORAD>HI+FFTHEN1B80

1875 SP (AD-HI)=A:RETURN

1880 IFESTHENPOKEAD,A

1885 RETURN

1900 REM GET OPERAND

1910 A=AD (PEEK (PC))

1920 ONABOSUR1930,1935,1940,1945,1950,1955,1960,1965,1970,1975,
1980, 1985, 1990

1925 IFAD<HIORAD>HI+FFTHENRETURN

1927 OP=SP (AD-HI) : RETURN

1930 AD=0:RETURN:REM IMPLIED

1935 AD=PC+1:0P=PEEK (AD) :L=1:RETURN: REM #
1940 AD=PEEK (PC+1) : OP=PEEK (AD) :L=1: RETURN: REM ZERO-PAGE

132

The Machine Language Book of the Commodore 64

1945 AD=0:RETURN:REM A

1950 AD=PEEK (PC+1) +HI*PEEK (FC+2) : OP=PEEK (AD) : L=2: RETURN

1955 AD=FEEK (PC+1) +XRANDFF : OF=PEEK (AD) : L=1: RETURN

1960 AD=PEEK (FC+1) +YRANDFF : OP=PEEK (AD) : L=1: RETURN

1965 AD=FPEEK (PC+1) +HI*FPEEK (PC+2) +XR: OP=PEEK (AD) : L=2: RETURN

1970 AD=PEEK (PC+1) +HI*PEEK (PC+2) +YR: OP=PEEK (AD) : L=2: RETURN

1935192;$555(PEEK(PC+1)»+HI*PEEK(PEEK(PC+1)+1ANDFF)+YR:DP=PEEK(AD)

1980 AD=PEEK (FC+1) +XRANDFF : AD=PEEK (AD) +HI*PEEK (AD+1) : OP=PEEK (AD)
=1 RETURN

1985 A=PEEK (FC+1) : A=A+HI* (A3127) +2+FC

1986 PC=INT(A/HI) ¥HI+ ((A+ (A>8C) ¥UL) ANDFF) : RETURN: REM RELATIVE

1990 AD=FEEK (PC+1) +HI*PEEK (PC+2) : AD=PEEK (AD) +HI*FPEEK (AD+1) : OFP=PEEK
(AD) 2 RE | URM

2040 FORP=STOE: PRINT" “;

2050 A=F: GOSUBR290: REM ADDRESS

2060 FRINT" "j:A=PEEK (P):GOSUB2320: PRINT" "3 :J=PEEK (F) : OP=AD (J)

2070 ONOPGOSUB23S0, 2360, 2360, 2350, 2370, 2360, 2360, 2370, 2370, 2360, 2360,
2O, 2TT0

2080 PRINT" ":MN(J)" ";

2090 ONOPGOSUBZ110,2120,2130,2140,2150,2160,2170,2180,2190,2200,2210,
L0, 22480

2100 PRINT" " NEXTP

2105 IFF>=ULTHENP=F-UL

2110 RETURN

2120 PRINT"#";::GOSUB2330: P=F+1: RETURN

2130 GOSUERRIIO0:P=F+1:RETURN

2140 PRINT" A";:RETURN

2150 GOSUBRR60: P=F+2: RETURN

2160 GOSURZIZO:P=F+1:PRINT", X" s RETURN

2170 GOSUB23IZ0:P=P+2: PRINT",Y"; : RETURN

2180 GOSUB2260: P=F+2: PRINT" , X "3 : RETURN

2190 GOSUBZ260:P=P+2: PRINT",Y"; : RETURN

2200 PRINT" (" : GOSUE2330: P=F+1: PRINT") ,Y"; : RETURN

2210 PRINT" (";:GOSUR2330: P=P+1: PRINT" ,X) "3 : RETURN

2220 A=FEEK (P+1) : A=A+HI* (A3127) +2+P

2230 A=INT (A/HI) #HI+ ((A+(A>SC) *UL) ANDFF) : PRINT"$" ; : GOSUB2290

: P=F+1: RE [URN

2240 PRINT" ("3 :GOSUE2260

2250 PRINT")";:P=P+2: RETURN

2260 PRINT"$";

2270 A=PEEK (P+1) +HI*PEEK (P+2)

2280 REM HEX ADDRESS A

2290 HE=INT (A/HI) : A=A-HI*HE

2300 FRINTHS (HE/16) H$ (HEAND1S) ;

2310 REM HEX BYTE A .

2F20 PRINTHE (A/16) HE (AAND1S) ; : RETURN

2330 PRINT"$";

2340 A=FEEK (P+1) : GOTO2320

2350 PRINT" "3 s RETURN

2360 BOSUB23I40: PRINT" "3 : RETURN

2370 GOSUBZI40:PRINT" ";:A=PEEK (P+2) : 6OTO2320

23B0 IFASC (A%$) =42THENEND

2390 A=0:FORJ=1TOLEN (AF) : X=ASC(RIGHTS (A%,J)) —48: X=X+ (X39) %7z A=A+X*
(161 (I=1)) s MEXT

2391 RETURN

I000 PRINT:PRINT" {C/DN}{C/DN3":PRINT"ADDRESS: #**%#{C/LF}{C/LF}
LC/LFY {C/LF3LC/LF3 {C/LF3 " 1 : INPUTA$: GOSUR2380 }

3010 PRINT"{C/UR}",,:AD=A: OP=PEEK (AD) : A=0P: GOSUE2320: INFUT" {C/L.F3
CC/ILE3 {0/ B {C/LF3 " ; A%: GOSUB2380 AT

3020 GOSUB1850: PRINT" {C/UP3 : IFAD=PC
THEN1000

3030 GOTOZOO

3100 INFUT"ACTUAL SIMULATION Y{C/LF3}{C/LF¥{C/LF3}";ESH:ES=ES$="Y"
3110 PRINT"{(C/UP} " GOTOZ00

133

The Machine Language Book of the Commodore 64

10000 DATA 0,1,2,3,8,5,6,7,8,9,8,E,C,D,E,F
10010 DATABRK™ ;11,1 "ORA .\ 35, 11, 59250 .01
10020 DATA"277".0,1,"272" 0,1, "ORA" , 35,3
10030 DATAASL" 3.3, 45924 .00 1, "PHP" 157, 1
10040 DATA"ORA",35,2,"ASL",3,4,"?77",0,1
10050 DATA"?72",0,1,"0RA",35,5, "ASL", 3,5
10060 DATA2274 1001, "BPLY , 10,12, "ORAY 55,10
10070 DATA"292",0,1,"227" 10,1, "222%,0,1
10080 DATAORAY 35,6, "ASLY, 3,6, 2227, 0,1
10090 DATA"CLC",14,1,"0ORA",35,9,"72727%,0,1
10100 DATA"?72",0,1,"??7",0,1, "ORA" ,35,8
10110 DATA"ASL",3,8,"?77",0,1,"JSR",29,5
10120 DATA"AND" ,2,11,"227%,0,1, 277" 0,1
10130 DATA"BIT",7,3,"AND",2,3, "ROL", 40,3
10140 DATA"227",0,1,"PLP",39,1, "AND" 2,2
10150 DATA"ROL".40,4,"377% 011 "BIT" .7,
10160 DATA"AND" 12,5, "ROL" , 40,5, "292 1011
10170 DATA"EMI",B,12,"AND",2,10,"?77",0,1
10180 DATA" 222" 10,1, 72277 ,0,1, "AND" , 2.6
10190 DATA"ROL",40,6,"222%,0, 1, "SECH 545, 1
10200 DATA"AND",2,9,"?277% ,0,1,"277",0,1
10210 DATA"?27" .01, "AND" 2.8, "ROL" 40,8
10220 DATA"?22" .01, "RTI" 42,1, "EOR", 24,11
10230 DATA"?77",0,1,"272",0,1,"277",0,
10280 DATA"EOR" .24, 3, "LSR",33,3,"???",0,1
10250 DATA"PHA" .36, 1,"EOR" 24,2, "LER" 3%, 4
10260 DATA"?77",0,1,"JMP",28,5, "EOR" ,24,5
10270 DATA'LER",3%,5, 12290 ,0. 1, "BYC" 12,12
10280 DATA"EDRY ,24,10,"777%,0,1, 277" ,0,1
10290 DATA"?77" 0,1, "EOR",24,6, "LSR" ,33,6
10300 DATA"?77%,0,1,"CLI", 16,1, "EOR",24,9
10310 DATA"?27%,0,1,"777%,0,1,"272",0,1
10320 DATA"EOR",24,8, "LSR",33,8,"?77",0,1
10330 DATA"RTS" 43,1, "ADC" 11,11,"272" 0.1
10340 DATA"?P27,0,1,%772% 0,1, "ADC" , 1.3
10350 DATA"ROR" .41 ,3,"222%,0,1, "PLAY , 38,1
10360 DATA"ADC" 11,2, "ROR" ,41,4.,"222" 10, 1
10370 DATA"JME",28,13,"ADC",1,5, "ROR",41,5
10380 DATA"?77",0,1, "BUS" 15,12, "ADC" 11,10
10390 DATA"?27Y,0,1, 2279 0,1,9777",0,1
10400 DATA"ADC",1,6,"ROR", 41,6, " 277" ,0,1
10410 DATA"SEI",47,1,"ADC",1,9,"??7",0, 1
10420 DATA"?77%,0,1,%??7",0,1,"ADC",1,8
10430 DATA"ROR™,41,8," 727" 0,1, 777", 0,1
10440 DATA"STA",48,11,"?77%,0,1,"7?77%,0,1
10450 DATA"STY" 50,3, "STA" , 48,3, "STX" 49,3
10460 DATA"?77%.0,1, "DEY" , 23, 1,"727" 0,1
10470 DATA"TXA" |54,1,"227% 0,1, "8TY" 50,5
10480 DATASTA" 48,5, "STX" 49,5, 9777, 0,1
10490 DATA"ECC",4,12, "STA",48,10,"777" 0,1
10500 DATA"?77",0,1,"STY",50.6, "STA" 48,6
10510 DATA"STX",49,7," 277", 0,1, "TYA" 56,1
10520 DATA"STA", 48,9, "TXS",55,1," 227", 0, 1
LOS30 DATA"??7",0,1,"STA",48,8,"777",0, 1
10540 DATA" 2727 041, "LDY" 32,2, "LDA" /30, 11
10550 DATA LDX",31,2,"722" 0.1, "LDY", 32,3
10560 DATA"LDA", 30,3, "LDX", 31,5, " 275" 0.1
10570 DATA"TAY".52.1,"LDA" 30,2, "TAX" 51,1

134

10580
10590
10600
10610
10620
10630
10640
10650
10660
10670
10680
10690
10700
10710
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810
10820
10830
10840
10850
10860

The Machine Language Book of the Commodore

DATA"?77",0,1,"LDY",32,5, "LDA",30,5
DATA"LDX",31,5,"?77",0,1,"BCS",5,12
DATA"LDA" ,30,10,"?272",0,1,"?77",0,1
DATA"LDY",32,6,"LDA",30,6, "LDX",31,7
DATA"?77",0,1,"CLV",17,1, "LDA",30,9
DATA"TSX",53,1,"?77",0,1,"LDY",32,8
DATA"LDA",30,8, "LDX",31,9,"7?77",0,1
DATA"CPY",20,2,"CMP",18,11,"?7?",0,1
s i R it
DATA"CMP":?B:E:"Bék":2é,i,"??73,o:1
DATA"CPY",20,5,"CMP",18,5, "DEC",21,5
DATA"?77",0,1,"BNE",9,12, "CMF",18,10
DATA" 222" ,0,1,"?277",0,1,"277",0,1
DATA"CMP", 18,6, "DEC",21,6,"?77",0,1
DATA"CLD",15,1,"CMF",18,9,"?7?7?",0,1
DATA"?77",0,1,"?77",0,1,"CMP", 18,8
DATA"DEC",21,8,"777",0,1,"CPX",19,2
DATA"SBC" ,44,1,"777",0,1,"??7",0,1
DATA"CPX",19,3,"SBC" , 44,3, "INC",25,3
DATA"?77",0,1, " INX",26,1,"SEC", 44,2
DATA"NOP" ,34,1,"777",0,1,"CPX",19,5
DATA"SBC" ,44,5,"INC" , 25,5, "??7",0,1
DATA"EER" ,6,12, "SBC",44,10,"7?77",0,1
DATA"??7",0,1,"?7 ",0,1,"932",42,61
DATA"INC" ,25,6,"777",0,1,"SED", 46,
DATA"SEC",44,9,"?77",0,1,"7277",0,1
DATA"?77",0,1,"SEC", 44,8, " INC",25,8
DATA" 277" ,0,1

64

135

The Machine Language Book of the Commodore 64

Program description for the single-step simulator

100 -

200 -

400 -

900 -

980
990
1000 -
1100 -

1200 -

1800 -

1850 -

1900 -

-136

190

360

530

920

1010
1150

1751

1820

1885

1990

Build the register display, initialize variables
and fields. i

Display the register contents. The contents of
the registers are displayed in hexadecimal. The
flags are displayed using the CHR$ function by
adding the value of the flag (0 or 1) to 48.

The keys are tested. If the space bar is
pressed, execution passes to the simulator
routine at line 1100. The register commands
result in branches to input routines which
display the o0ld value and wait for the input of
the new value. For the flags, the state is
simply reversed. If the "cursor down" key is
pressed, the disassembler routine is called and
the next instruction is displayed.

Calculate the value of the -status register SR
based on the individual flags.

Set N and Z flags.
Increment program counter.
Disassemble the next instruction.

Perform single-step simulation. The appropriate
routine is called depending on the operation
code.

Simulate routine for all 6510 commands. The
routines are alphabetically ordered by mnemonic.
The prgogram counter is incremented according to
the length of the instruction in line 990. The N
and Z flags are set according to the value in
the accumulator by a jump to line 980.

All branch commands are handled here, after the

corresponding flag value is placed in the
variable FL.

This routine is used to write values in memory.
The stack area from $100 to $1FF is handled
differently. The POKEs are executed only if
actual simulation is desired (variable ES).

Get the operands for the commands based on the
addressing mode. After calling this routine, the
address of the operand is in AD, the value
itself in OP. :

The Machine Language Book of the Commodore 64

2040 - 2370 Disassembles then next instruction after each
single step. The operand is displayed according
to the addressing mode in line 2070. If the
memory location does not contain a legal
instruction code, three question marks are
displayed instead. The following routines carry
out the addressed task as well as the conversion
from decimal to hex.

3000 - 3030 Displays and changes the memory contents. The
changes are allowed only if the actual
simulation is selected.

3100 Select the actual simulation parameters.

10000-10860 Contain the instruction mnemonics, operation
codes and addressing modes.

137

The Machine Language Book of the Commodore 64

Descriptions of the important variables.

FF
HI
uL
sC
MNS$ (255)
OP(255)

AD(255)

SP(255)
H$(15)
PC

AC

XR

YR

SR

O ws =2

TS

ES

OP

138

constant 255

constant 255
constant‘65536

constant 32767

table of 6510 mnemonics

table with the corresponding operation codes for
the single-step simulation

table with the addressing mode for each
instruction.

the simulator stack
field with hex digits
program counter
accumulator

X register

Y register

status register

stack pointer
negative flag

overflow flag
break flag

decimal flag

interrupt flag

zero flag

carry flag

pressed key

length of operands

flag for actual simulation

operand

The Machine Language Book of the Commodore 64

7. Machine Language Programming on the Commodore 64

Machine language is particularly well-suited for programming
high resolution graphics on the Commodore 64. In this
section, We begin by programming graphics in BASIC and then
converting the corresponding routines to machine language.
By doing this, you will become well acquainted with many

machine language programming techniques.

Graphics programming can be done in BASIC only with a
confusing set of PEEKs and POKESs. By writing a few machine
language routines we can greatly simplify these graphics.
You will learn how to combine machine language programs with
BASIC programs, thereby taking advantage of the strong

points of both languages.

The programming details of the video-controller kernal
routines are discussed only as much as necessary to solve
our problem. If you want to get a closer look at the
hardware and operating system of the Commodore 64, we
recommend the book The Anatomy of the Commodore 64 available

from ABACUS Software.

Before you turn to the first example, take a look at how you
can use machine language programs from BASIC and how how to
pass parameters between the two programs.

The normal way to call a machine language program from BASIC

139

The Machine Language Book of the Commodore 64

is to use the SYS command to specify the memory location
where execution is to begin. SYS assumes that the machine
language program is already in memory and then passing
control to it. When the machine language program executes an
RTS instruction (return from subroutine), execution returns

to the BASIC statement following the SYS command.

Some machine language routines require no parameters to be
passed to it. A routine for clearing the screen, for

example, does not require any parameters.,

Other routines require parameters. A routine for plotting a

point requires an X and Y coordinate, for example,
How can you pass parameters to machine language routines?

There are several different techniques for passing

parameters:

a. Using the pigeon-hole method, you can place
the parameters in one or more memory locations
previously agreed upon. For our example, one
memory loﬁation contains the horizontal
coordinate and another memory location the
vertical coordinate. You can do this from
BASIC with two POKE commands. The machine

language program can then get the values of

140

The Machine Language Book of the Commodore 64

the coordinates from the memory locations and

process them.

Using the register pass area method, you can
pass values between the BASIC program and the
machine language program. When a SYS command
is executed by BASIC, it is possible to
transfer specific values through the
registers, Because we cannot access the
processor registers directly from BASIC, four
memory locations are reserved for this
purpose. When the SYS instruction is executed,
the contents of the following memory locations
are copied into the registers before the

branch to the routine is made.

780 => accumulator
781 = X register
782 = Y register
783 => status register

To start a machine language routine with a
specific value in the accumulator, you would
POKE location 780 with the desired value.
Addresses 781 and 782 pertain to the X and Y
registers., Caution must be exercised in
assigning a value to the status register. Take
care not to unintentionally set the decimal or

interrupt flag since this can 1lead to

141

The Machine Language Book of the Commodore 64

142

complications.

After the machine‘ 1anguagev routine 1is
fiﬁished, the contents of these registers are
saved in these same memory locations. So the
machine language routine can pass information
back to the BASIC program using the same
technique. To retrieve a value, the BASIC
program merely PEEKs the desired register pass
area. Using this method, it is possible to
transfer three or possibly four 8-bit values
between the BASIC and machine 1language
programs, This should suffice for most
applications., If more parameters must be
transferred, you must establish memory

locations as described above.

Using the BASIC interpreter formula evaluation
routine, you can pass an almost unlimited
number of parameters to the machine language
routine. For example, when the interpreter
encounters an instruction such as POKE 780,10,
it uses a built-in ROM routine to evaluate the
parameters following the POKE keyword. This
routine evaluates not only constants, but
complicated expressions as well, such as POKE
A+7.5*2% (INT(SIN(X)*1000)),EXP(X). You can
céll this ROM routine from your own machine

langauge program, Later you will see how to

The Machine Language Book of the Commodore 64

use these routines. For now, use the register
pass area to transfer parameters directly via

the registers.

Before discussing graphics programming, you should be

acquainted with a few principles.

The distinguishing characteristic of high resolution
graphics is that you can access each individual pixel on the
screen, This is unlike the normal text mode, where you can
access only complete characters (8X8 pixels). For normal
text there are 25 * 40 characters at your disposal; with
high resolution graphics there are eight times as many in

each direction, 200 * 320 points.

In normal text mode, each character requires one byte in
video RAM. Each screen location can display any of 256
different characters. Normal text mode requires 25 * 40 * 1
= 1000 bytes of memory called video RAM. Video RAM is
located beginning at address 1024 thru 2023 ($400 to S$7E8).
This starting address of the video RAM can be changed in
steps of 1 Kbyte ($400, $800, $C000, $1000, etc.) bty

programming the video controller.

In high resolution graphics mode, each point requires one
bit. Each pixel can be either on or off. High resolution
graphics requires 200 * 320 * 1 bit = 64000 bits = 8000

bytes of memory. Memory used in this way is often called the

143

The Machine Language Book of the Commodore 64

bit-mapped area. The starting address of the bit-mapped area
is specified by programming the video controller in the

Commodore 64.

Before programming the video controller, you have to first
decide where the 8K bit-mapped area is to be located. At
first, you may be tempted to use 8K storage from the area
that BASIC normally uses. But since you are programming in
machine language you have other alternatives., The Commodore
64 has a full 64K of RAM, in addition to the ROMS, input and
output devices and character.ROMS. You can use the RAM that
lies "underneath" (in the same address range) the BASIC and
kernal ROM. This area is located beginning at address $E000
to SFFFF. Normally you cannot use this area from BASIC
becauseAyou must first turn off the BASIC interpreter and

operating system when accessing these locations.

The video RAM normally used for the text screen is used as
color memory when using high resolution graphics. Since the
video RAM and bit-mapped areas must be located within the
same 16K range ($C000 - éFFFF), you can use the from $C000
to SC3FF for color memory. Since there is only 1K of video
RAM available fér use as color memory, each byte of video
RAM determines the color of the 64 pixels within the field

of an 8x8 cells.

Now we present several routines which you can use for

programming in high resolution graphics.

144

The Machine Language Book of the Commodore 64

The first routine changes the Commodore 64 from text mode to
high resolution graphics mode. By using the area bemeath the
ROMS for the bit-mapped graphics area, the normal text
screen contents are not destroyed. The contents is preserved
when we switch from one mode to another. Here's the program
in pseudo-BASIC. Of course this BASIC program does not run

since we cannot use hexadecimal numbers as constants.

100 v = 53428 REM VIDFO CONTROLLER START ADDRESS
110 V1 = V+17 REM GRAPHICS-MODE SWITCH ADDRESS
120 v2 = V+24 REM VIDEO RAM ADDRESS

130 CIA = $DD0O0 : REM 16K RANGE

140 POKE V1,59

150 POKE Vv2,8

160 POKE CIA,O

170 END

o 0 o0

To convert this to machine language, first decide where the
machine language program is to be stored. Since the area
from $C000 to $C400 is used as color memory, use the area
beginning at $C400 for the program. The conversions of these
commands to machine language is straight-forward. Remember
to RUN the short program UNTOKEN before creating the

following assembler source program.

100 VIDEO = 53248 ; VIDEO CONTROLLER

110 V1 = 53625 : ADDRESS FOR GRAPHICS MODE
120 v2 = 53272 ; ADDRESS FOR VIDEO RAM ADDRESS
130 CIA = $DDO0 ; 16K SELECTION

140 *= $C400 ; START OF OUR ROUTINE

150 LDA #59

160 STA V1

170 LDA #8

180 STA V2

190 LDA #0

200 STA CIA

210 RTS

220 .EN

145

The Machine Language Book of the Commodore 64

Assembling the above program, gives you this listing:

D000 100 VIDFO = 53248
D011 110 v1 = 53265
D018 120 v2 = 53272
DDO0O 130 CIA = $DDO0

140 *= $C400
C400 A9 3B 150 ON LDA #59
C402 8D 11 DO 160 STA vl
C405 A9 08 170 LDA #8
C407 8D 18 DO 180 STA v2
C40A A9 00 190 LDA #0
Cc40C 8D 00 DD 200 STA CIA
C40F 60 210 RTS

220 .EN

Now let's write a routine which switches the Commodore 64
back to normal text mode. You do this by loading the video
controller registers with their original values. For the

sake of simplicity, append this routine to the previous one.

100 VIDEO = 53248 ; VIDEO CONTROLLER
110 V1 = 53625 : ADDRESS FOR GRAPHICS MODE
120 v2 = 53272 ; ADDRESS FOR VIDEO RAM ADDRESS
130 CIA = SDDO0 ; 16K SELECTION

140 *= $C400 ; START OF OUR ROUTINE
150 ON LDA #59

160 STA V1

170 LDA #8

180 STA V2

190 LDA #0

200 STA CIA

210 RTS

220 ; TURN OFF

230 OFF LDA #27

240 LDA V1

250 LDA #21

260 STA V2

270 LDA #3

280 STA CIA

290 RTS

300 .EN

After assembling this program, you should display the symbol

146

The Machine Language Book of the Commodore 64

table. The symbols ON and OFF have been defined, even though
they are not referred to in the program? We have done this
because these addresses are used later for the calls via the

SYS instruction.

D000 100 VIDEO = 53248
DO11 110 vl = 53265
D018 120 v2 = 53272
DDOO 130 CIA = $DDO0
140 *= $C400
C400 A9 3B 150 ON LDA #59
Cc402 8D 11 DO 160 STA vl
C405 A9 08 170 LDA #8
C407 8D 18 DO 180 STA V2
C40A A9 00 190 LDA #0
C40C 8D 00 DD 200 STA CIA
C40F 60 210 RTS
Cc410 220 ; TURN OFF
C410 A9 1B 230 OFF LDA #27
C412 8D 11 DO 240 STA V1
C415 A9 15 250 LDA #21
C417 8D 18 DO 260 STA V2
C41A A9 03 270 LDA #3
C41C 8D 00 DD 280 STA CIA
C41F 60 290 RTS
300 .EN
C400 / C420 / 0020
SOURCE FILE IS EXAMPLE.SRC
0 ERRORS
OFF C410 CIA DDOO ON C400
VIDEO D000 A2 D011 V2 D018

Before you test these routines, convert the starting
addresses ON and OFF into decimal: $C400 is equal to 50176,
$C410 is equal to 50192. You can test the routines by using
a short BASIC program:

100 SYS 50176 : REM GRAPHICS ON

110 GET AS$: IF A$="" THEN 110
120 syYs 50192 : REM GRAPHICS OFF

147

The Machine Language Book of the Commodore 64

This program switches to the high resolution graphics mode,

waits for a key press and then switches back to the normal

text mode. Try it!

When you RUN the program, a mixture of colored squares
appears on the screen., What you see are the random values
that the unused RAM area contains after the computer is

turned on. If you press a key, you return to the normal

text screen mode.

The next task is to clear the high-resolution graphic screen
and color memory. In BASIC you can perform this by using a

loop to POKE the bit-mapped graphics area.

To erase all the points in the bit-mapped graphics area,
each bit must be set zero. Therefore each byte of the bit-
mapped area is also set to zero. The loop must clear the
area beginning at address $E000 through SFFFF (actually to

SFF3F because only 8000 and not 8192 bytes are used).
FOR I = 53744 TO 65535 : POKE I,0 : NEXT

You can do this with a BASIC program, but it takes about 30
seconds to execute. In machine language the whole thing

takes place much faster.

Earlier we write a machine language program to display the

Commodore 64's character set on the screen. We used an index

148

The Machine Language Book of the Commodore 64

register to control the program 1loop. This next loog,
requires a range beyond the 256 maximum range of the X and Y
index registers. Since you must clear 8000 bytes (length of
the bit-mapped area) you can do this with two nested loops.

In BASIC it might look like this:

100 AD = 57344

110 FOR X = 0 TO 31
120 FOR Y = 0 TO 255
130 POKE AD+Y, 0

140 NEXT Y

150 AD = AD+256

160 NEXT X

Here we divided the range of 8192 bytes into 32 parts (or
"pages") of 256 bytes each. During each pass through the
loop 256 bytes are cleared. Then the base address (AD) is
incremented by 256 and the next 256 bytes are cleared. The
occurs a total of 32 times, as controlled by the variable X.
As an "freebie" we also cleared an extra 192 bytes in the
last page (bytes 8001 through 8192), Since these 192 bytes
are unused, this won't cause us any problems., Now convert

the BASIC program to machine language:

100 AD = $E000

110 LDA #0 ; ERASE ACC
120 LDX #0

130 LDY #0

140 STA AD,Y

150 INY

160 BNE SYMB1

170 ; AD = AD + $100
180 INX

190 ; IS X = 31?

200 ; NO, THEN BACK TO LINE 130
210 .EN

- 149

The Machine Language Book of the Commodore 64

Some missing pieces from the above program. Can you
correctly place the label SYMB1? It should be placed at line
140. vVariable AD is not yet incremented. Use the indirect
indexed addressing mode for this. Using this technique, the
actual address is obtained from the sum of the two-byte
pointer in page zero and the Y-register. Later you can
increment this péinter by $100, as called for in line 170.
The indexed addressing mode used in line 140 above can
access a range of only 256 bytes, but the indirect indexed
addressing technique overcomes this limitation. The test of
the X-register for 31 in line 190 and the branch back in
line 200 are straight-forward. Here's the changes to the

above program:

100 AD = S$E000

110 LDA #0 : ERASE ACC
120 LDX #0

130 SYMB2 LDY #0

140 SYMB1 STA (AD),Y
150 INY

160 BNE SYMB1

170 ; AD = AD + $100
180 INX

190 CPX #32

200 BNE SYMB2

210 .EN

Using indirect indexed addressing, address AD must be a two-
byte pointer located in page zero, not an absolute address
as before. You can use the memory locations $FA and $FB for
this pointer. This pointer is loaded with the value S$E000 at
the beginning of the routine - the low-byte ($00) in SFA and

the high-byte ($SE0) in $FB. Now add an RTS instruction to

150

The Machine Language Book of the Commodore 64

the end of the routine, and the final program looks like

this:

90
100

102
104

106
110
120
130
140
150
160
170
180
190
200
205
210

This routine is assembled beginning at $C420.

source program to disk and then assemble it.

00FA
00FB
C420
Cc420
C422
C425
C427
C42A
c42C
C42E
C430
C432
C433
C435
C438
C439
C43B
C43D

*= $C420
LDA #<SE000

STA $FA
LDA #>$SE000

STA S$FB

LDA #0 ; ERASE ACC

LDX #31
SYMB2 LDY #0

SYMB1 STA (AD),Y

INY

BNE SYMB1
INC S$FB
INX

CPX #32
BNE SYMB2
RTS

.EN

A9 00
8D FA 00
A9 EO
8D FB 00
A9 00
A2 00
A0 00
91 FA

DO FB
EE FB 00

EO 20
DO Fl1

90

95

97
100
102
104
106
110
120
130
140
150
160
170
180
190
200
205
210

AD
AD1

SYMB2
SYMB1

RTS

SFA
S$FB
$C420
#<SE000
AD
#>SE000
AD1

#0

#31

#0
(AD),Y

SYMB1
AD1

#32
SYMB2

Save the

151

The Machine Language Book of the Commodore 64

C420 / C43E / 001E
SOURCE FILE IS EXAMPLE 2.SRC
0 ERRORS

AD 00FA AD1 00FB SYMB1 C430 SYMB2 C42E

Now that the above program works, can you write a program
that presents a more elegant solution? First, you can use
zero-page addressing for the two addresses AD and ADl. This
is done by using an asterisk before each of the labels. You
can also remove the instruction for loading the accumulator
with zero in line 110 as this already occurs in line 100;
but you must first reverse the order of the assignments in
lines 100 to 102 and 104 to 106. If you let the X loop vary
from 32 to 0, you can eliminate the comparison in line 190.
These improvements enable the program a bit shorter. Here's

the new listing:

00FA 90 AD = SFA
00FB 95 ADl = SFB
C420 97 *= $C420
C420 A9 EO 100 LDA #>$E000
C422 85 FB 102 STA *AD1
C424 A9 00 104 LDA #<SE000
C426 85 FA 106 STA *AD
C428 A2 20 110 LDX #32
C42A A8 120 SyMB2 TAY
C42B 91 FA 130 syYyMBl STA (AD),Y
C42D C8 140 INY
C42E DO FB 150 BNE SYMB1
C430 E6 FB 160 INC *AD1
C432 CA 170 DEX
C433 DO F5 180 BNE SYMB2
C435 60 190 RTS

200 .EN

C420 / C436 / 0016
SOURCE FILE IS EXAMPLE 2.SRC
0 ERRORS

152

The Machine Language Book of the Commodore 64

AD OOFA AD1 00FB SYMB1 C42B SYMB2 C42h

With these changes, the program is shorter and faster. Try
out the machine language routines by calling them with the

following BASIC program:

100 sYs 50176 : REM GRAPHICS ON

110 GET AS$: IF AS$="" THEN 110
120 sYS 50208 : REM ERASE GRAPHIC IMAGE

130 GET A$: IF A$="" THEN 130 .
140 sys 50192 : REM GRAPHICS OFF

After RUNning it, the bit-mapped graphics mode of the
Commodore 64 is turned on. When a key is pressed, the
graphics screen is cleared. This happens almost immediately.
With the earlier BASIC version, this took 30 seconds! By
pressing a key again, you turn off the bit-mapped graphics
mode and return to normal text mode. Now you can write the

corresponding routine to initialize the color memory.

This routine accepts two parameters - one representing ;he
background color and the other the color of the set points.
The lower four bits (nybble) of each color memory byte
determines the background color and the upper nybble, the
color of the set points. Each color memory byte controls a
group of 8x8 pixels, as mentioned earlier, For example, if
the value of the byte is $10, then the lower nybble is 0 and
the upper nybble is 1. This means that the background is

black and the foreground is white for that particular’8X8

153

The Machine Language Book of the Commodore 64

cell. You can pass the colors to the routine in the
accumulator. Try to solve the problem yourself and then
compare your solution the one below. Use $C440 as the

starting address of the routine. Here's our listing:

00FA 90 AD = SFA
00FB 95 AD1 = SFB
C440 97 k= $C420
C440 A0 CO 100 LDY #>$C000
C442 84 FB 102 STY *AD1
C444 A0 00 104 LDY #<$C000
C446 84 FA 106 STY *AD
C448 A2 04 110 LDX #4
C44a 91 FA 130 sYMB1 STA (AD),Y
c44C cC8 140 INY
C44D DO FB 150 BNE SYMB1
C44F E6 FB 160 INC *AD1
C451 CA 170 DEX
C452 DO Fé6 180 BNE SYMB1
C454 60 190 RTS

200 .EN

C440 / C455 / 0015
SOURCE FILE IS EXAMPLE 3.SRC
0 ERRORS

AD 00FA AD1 00FB SYMB1 C44A

There is a small change to the previous program., The
instruction at 180 branches to SYMBl since the Y-register
contains zero; reloading with zero at SYMB2 is superfluous.
Try your version now., The starting address is $C440 or
50240. Pass the color value to the accumulator with POKE

780,16

Now that we have taken care of the "housekeeping routines",

you can start programming the most important routine for

154

The Machine Language Book of the Commodore 64

using high resolution graphics: setting and erasing
individual points. The next routine demonstrates several

programming technigques.

First a word about the layout of the bit-mapped graphics

area.

Look at the table on the following page. It illustrates the
relationship of the bit-mapped graphics area to the normal
40 column by 25 lines text screen. The numbers in the table
represent the offset from the start of the bit-mapped
graphics memory that specify if a particular pixel is turned
on or off, Let's call the address of the start of the bit-
mapped graphics memory + this offset, the target address.
For example, offset 9 of the bit-mapped graphics area
controls the pixel at X=8, Y=1. The target address for this

point is $E009 (SE000 + 9), where $E000 is the start of the

bit-mapped graphics area.

155

The Machine Language Book of the Commodore 64

X-coordinate
0-7 8-15 eess 312-319

COLUMN/ Col 0 Coll Col 39 Y-coordinate
LINE 0 8 312 0
1 9 313 1
2 10 . 314 2
Line 0 3 11 coes 315 3
4 12 316 4
5 13 317 5
6 14 318 6
7 15 319 7
320 328 632 8
321 329 633 9
322 330 634 10
Line 1 323 331 ceee 635 11
324 332 636 12
325 333 637 13
326 334 638 14
327 335 639 15
7680 7688 7992 192
7681 7689 7993 193
7682 7690 7994 194
Line 24 7683 7691 eeee 1995 195
. 7684 7692 7996 196
7685 7693 7997 197
7686 7694 7998 198
7687 7695 7999 199

The screen is divideq into 25 lines of 40 columns each; each
"cell" requires 8 bytes to represent the 64 pixels within
that cell (8 pixels per/line X 8 lines/cell). The contents
of a single byte controls one row of 8 pixels. Each bit
controls an individual pixel on the screen. The highest-
order bit represents the pixel on the far left; the lowest-

order bit represents the pixel on the far right.

bit number
contents

-
o w
(=2
- W
- N
O
oo

156

The Machine Language Book of the Commodore 64

If a byte in the bit-mapped area contains the bit pattern of
$10001100 (or $8C in hex), this means that the first,
fifth, and sixth pixelé from the left are set. Let's call
the contents of the byte at the target address the target

value,

To permit easy manipulation of the graphics, each pixel is
addressed by its horizontal (X) and &ertical (y)
coordinates. The coordinates range from 0 to 319 for the X-
axis (left side of screen to right) and from 0 to 199 for

the Y-axis (top of screen to bottom).

First convert the coordinates to actual offsets within the
bit-mapped graphics area. Note that each celi is 8-bytes in
length., Also note that X-coordinates of 0 thru 7 always fall
within the same 8-byte block. The same holds true for X-
coordinates of 8 thru 15, 16 thru 23, etc. To convert the X-
coordinate value to the start of the appropriate 8-byte
block, ignore the lower three bits of the X—coordinaté
value. Do this by using an AND instruction. To ignore the

lower three bits, do the following:

X AND %1111 1000

Here's an example:

X-coordinate ==========) 18

Binary representation== $0001 0010deC1mal

Mask for ANDing========> %1111 1000
Result=================> %0001 0000 = l6decimal

157

The Machine Language Book of the Commodore 64

The byte which controls the pixel with an X-coordinate of 18

is in the block beginning at offset 16.
The offset for the X-coordinate is calcuated as follows:
OFFSETy = (XH * 256) + (XL AND 248)

The reason for XL and XH is that an X-coordinate may range
from 0 to 319 which is beyond the 255 range of a single
byte. Therefore the X-coordinate must be specified using two

bytes.

Now for the Y-coordinate. The offset for the Y-coordinate is

calculated as follows:

OFFSETy = (Y AND 7) + 40 * (Y AND 248)

The complete formula for the calculating the offset for a

given X a Y coordinate is as follows:
OFFSET = XH*256 + (XL AND 248) + (Y AND 7) + 40*(Y AND 243)

Now translate the formula into machine language. Use the

registers to pass information to the routine as follows:

REGISTER CONTENTS
Y => Y-coordinate
A => XL-coordinate
X => XH-coordinate

Again, an X-;oordinate can range from 0 to 319, so this

158

The Machine Language Book of the Commodore 64

requires two bytes of storage. The Y-coordinate is kept in

the Y-register. You also need a second 16-bit storage

location for storing the offset (SUML/SUMH).

100 XL = $FA

110 XH =

120 SUML = SFC

130 SUMH = S$FD

140 *= $C460

150 STA *XL

160 STX *XH ; SAVE X~COORDINATE
170 TYA ; Y-COORDINATE

180 AND #SF8

First calculate the last term of the formula (EXPl = 40 * (Y
AND 248). The 6510 has no multiplication instruction.
Therefore an alternative way of performing multiplication is
needed. Recall that a value can be doubled by shifting the
contents to the left. Reduce the multiplication by 40 to

several doublings:
A* 40 =>A* 2%* 2 +Aa%*2%* 2% 3

Here, you first get twice the original value (A * 2), then
four times (A * 2 * 2), and then five times by adding the
original value (A * 2 * 2 + A), Three more doublings by 2 (2

* 2 * 2 =8) yield the original value times 40.

190 STA *$FE ; SAVE ORIGINAL VALUE
200 STA *SUML
210 LDA #0

220 STA *SUMH
230 ASL *SUML
240 ROL *SUMH
250 ASL *SUML
260 ROL *SUMH

CLEAR HI-BYTE

DOUBLING THE ORIGINAL VALUE..:s..
«+«IN SUML/SUMH

DOUBLING VALUE AGAIN PRODUCES

. .ORIGINAL VALUE * 4 IN SUML/SUMH

EYRE TREVIIE TRE

159

The Machine Language Book of the Commodore 64

When shifting 16 bits, you must use a combination of the ASL
instruction for the low-byte (8-bits) and the ROL instruc-
tion for the high-byte (8-bits). If the ASL instruction
causes the highest bit to be shifted out of the operand, the
carry flag is set. The ROL instruction shifts takes into
account by shifting this carry flag into the low-order bit
of the operand, keeping the mathematics exacting. Now you

can add the original value.

270 CLC ; CLEAR OVERFLOW

280 LDA *SUML

290 ADC *SFE

300 STA *SUML ; STORE RESULT AGAIN
310 LDA *SUMH

320 ADC #0
330 STA *SUMH ;ORIGINAL VALUE * 5 IN SUML/SUMH

Why do we add zero to SUMH? If a carry occurs in the SUML
addition, it must be taken into account by ;dding the carry

to the high-byte. Adding zero adds any carry which may have

been generated by the addition of the low-bytes.

Now we must double the result three more times.

340 ASL *SUML
350 ROL *SUMH ; ORIGINAL VALUE * 10 IN SUML/SUMH

360 ASL *SUML
370 ROL *SUMH ; ORIGINAL VALUE * 20 IN SUML/SUMH
380 ASL *SUML
390 ROL *SUMH ; ORIGINAL VALUE * 40 IN SUML/SUMH

This takes care care of the first and most difficult term.

Now add the second expression (EXP2 = (Y AND 7) + EXP 1).

160

The Machine Language Book of the Commodore 64

This is done using another 16-bit addition.

400
1 410
‘ 420
430
440
450
460
470

Next,

TYA
AND
CLC
ADC
STA
LDA
ADC
STA

we

;7 Y-COORDINATE IN ACCUMLATOR
#7

*SUML
*SUML
*SUMH
#0

* SUMH

add the X-value AND 248 (EXP3 = (X AND 248) +

EXP2)., EXP3 is the offset to the memory location for the

specified X and Y coordinates. It 1is contained in SUML/SUMH

after

480
490
500
510
520
530
540
550

the

CLC
LDA

ADC
STA
LDA
ADC
STA

instruction at line 550 is executed.

*XL
$#$F8
*SUML
*SUML
*XH
* SUMH
*SUMH

The bit-mapped graphics begins at $E000, so add this value

to the offset (TARGET = SE000 + EXP3) to arrive at the

target aaddress,

560
570
580
590
600
610
620

CLC
LDA
ASC
STA
LDA
ADC
STA

#<SE000
*SUML
*SUML
#>SE000
*SUMH
*SUMH

At last the target address is in SUML/SUMH.

161

The Machine Language Book of the Commodore 64

Remember that the contents of the byte at the target address
controls 8 pixels on the bit-mapped graphics screen. From
the X-coordinate, we must now determine the bit positon
within that byte must be set to one in order for the pixel

to be turned on.

Earlier we ignored the lowest three bits of the X-coordinate
to calculate the target address. Here's where use use the
il

information contained in those three bits. First isolate

the lowest three bits of the X-coordinate:

XB = XL AND 7

XB is now a value between 0 and 7 and represents the X-
coordinate offset within the bit-mapped control byte. The
following table shows the correspondence of the X-coordinate

offset and its bit position within the control byte:

X
coord. bit
offset position

NouedwhhHEO
I U 1]
OHNDWUAI

The lowest three bits of the X-coordinate and the bit
positon are inverses of each other. You can convert an ¥-

coordinate offset to a bit position by using the exclusive

162

The Machine Language Book of the Commodore 64

OR instruction:

630 LDA *XL ;low-byte of X-coordinate
640 AND #7 ;isolate the lowest three bits
650 EOR #7 ;convert to bit position

From the earlier calculations, we found the target address.
From the above calculations, we found the bit position which
needs to be set at that target address to turn on the pixel.
We know that each bit position has a certain value, which we
call the target value., Now we have to convert that bit
position to the target value. This target value is then

stored at the target address to set the specific pixel.

To calculate the target value corresponding to this bit
position we shift a one bit to the left for the number of

times indicated by the bit position. Here's the code:

660 TAX ; bit position in X-register
670 LDA #1 ;"one" bit

680 SHIFT DEX

690 BMI OK

700 ASL A ; shift to left

710 BNE SHIFT

720 OK ...

The bit position is contained in the accumulator after
executing the instruction in line 650. The target value is
calculated by shifting left as many times as specified by
the X-register. In lines 680 and 690 the contents of the X-
register are decremented and checked to see if it's negative

(less than zero). If not, continue shifting another position

163

The Machine Language Book of the Commodore 64

to the left. The branch in line 710 is always executed

because the result of the shift is never equal to zero.

Storing the target value contained in the accumulator at the

target address turns on the desired pixel.

But there's another consideration. Remember that each target
address controls 8 pixels. If another pixel is already set
at that target address, then storing the above target value
destroys the previous value and erase the other pixels

controlled by the same target address.

To avoid this, you should combine the previous value at the
target address with new target value. Use the OR instruction
for this, By ORing the o0ld value with the new target value,

any previously set pixels are not erased.

The target address is pointed to by the contents of
SUML/SUMH. To combine the previous value with the new

value, you can do the following:

720 OK LDY #0
730 ORA (SuML),Y
740 STA (SUML),Y
750 RTS

Now the new pixel is set and we are done. There is one small

point which we overlooked.

164

The Machine Language Book of the Commodore 64

The OR instruction in line 730 accesses the contents of a
memory location in the range from S$E000 to S$FFFF. The
Commodore 64 normally returns the value of the contents of
the kernal ROM also located at these same addresses (but in
a different bank). A "switch" controls access to either the
ROM or RAM at those addresses. The ORA (SUML),Y instruction
above would access the ROM and not the bit-mapped graphics
area. To access the RAM containing the bit-mapped graphics
area, set the switch (I/0 register) located at address 1.
When you do this, you must inhibit the interrupts because
the interrupt routines are not available while the ROM is
switched off. After the contents at the target address are

updated, the interrupts are re-enabled.

730 LDX #$34 ; RAM CONFIGURATION
740 SEI ; INHIBIT INTERRUPTS

750 STX *1

760 ORA (SUML),Y

770 STA (SUML),Y ; SET POINT

780 LDX #$37 ; ROM CONFIGURATION
790 STX *1

800 CLI ; ENABLE INTERRUPTS

810 RTS

820 .EN

Here is the complete assembly listing of all of the routines

that we've talked about in this chapter:

00FA 100 XL = SFA

00FB 110 XH = SFB

00FC 120 SUML = $FC

00FD 130 SUMH = $FD

C460 140 *= $C460

C460 85 FA 150 STA *XL

C462 86 FB 160 STX *XH ; SAVE X-COORDINATE

165

The Machine Language Book of the Commodore 64

C464
C465
C467
C469
C46B
C46D
C46F
C471
C473
C475
C477
C478
C47A
C47cC
C47E
C480
C482
C484
C486
C488
C48A
C48C
C48E
C490
C491
C493
C494
C496
C498
C49A
c49C
C49E
C49F
C4Al
C4A3
C4A5
C4A7
C4A9
C4AB
C4AD
C4AE
C4B0O
C4B2
C4B4
C4B6
C4B8
C4BA
C4BC
C4BE
C4CO
C4Cl
C4C3
C4c4
C4Cé
c4c7

166

F8
FE
FC
00

FC
FD

FD

FC
FE

FD
00
FD
FC
FD
FC
FD
FC
FD

07

FC
FC
FD
00
FD

FA
F8
FC
FC
FB
FD
FD

00
FC
FC
EO
FD
FD
FA

07
01
03

FA

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710

SHIFT

TYA
AND
STA
STA
LDA
STA
ASL
ROL
ASL
ROL
CLC
LDA
ADC
STA
LDA
ADC
STA
ASL
ROL
ASL
ROL
ASL
ROL
TYA
AND
CLC
ADC
STA
LDA
ADC
STA
CLC

- LDA

AND
ADC
STA
LDA
ADC
STA
CLC
LDA
ADC
STA
LDA
ADC
STA
LDA
AND
EOR
TAX
LDA
DEX
BMI
ASL
BNE

; Y-COORDINATE
#SF8
*SFE
*SUML
#0
*SUMH
*SUML
*SUMH
*SUML -
*SUMH

; ERASE CARRY
*SUML
*SFE
*SUML
*SUMH
#0
*SUMH
*SUML
*SUMH
*SUML
* SUMH
*SUML
*SUMH

7 Y-COORDINATE

#7

*SUML
*SUML
*SUMH
#0

*SUMH

*XL
#SF8
*SUML
*SUML
*XH
*SUMH
* SUMH

#<SE000

*SUML
*SUML

#>SE000
* SUMH
*SUMH
*XL

#7

#7

#1
OK

A
SHIFT

C4C9
C4CB
C4CD
C4CE
C4D0
C4D2
C4aD4
C4D6
C4D8
C4D9

The Machine Language Book of the Commodore 64

A0 00 720 OK LDY #0
A2 34 730 LDX #$34
78 740 SEI *]1
86 01 750 STX
11 FC 760 : ORA (SUML) , Y
91 FC 770 STA (SUML) , Y
A2 37 780 LDX #$37
86 01 790 STX *1
58 800 CLI
60 810 RTS
820 «EN

C460 / C4DA / 007A
SOURCE FILE IS EXAMPLE 3.SRC

0 ERRORS
OK C4cC9 SHIFT C4C3 SUMH 00FD
XH 00FB XL 00FA

Now to try out these routines,

program to call the high resolution graphics:

100
110
120
130
140
150
160
170
180
190
200
210

SYS 50176 : REM GRAPHICS ON

SYS 50208 : REM ERASE GRAPHIC IMAGE
POKE 780,16 : REM BLACK/WHITE
SYS 50240 : REM INITIALIZE COLOR
FOR X=0 TO 319

POKE 780,X AND 255 : REM X-LO
POKE 781,X / 256 : REM X-HI
POKE 782,X * 0.625 : REM Y

SYS 50272 : SET POINT

NEXT

GET A$: IF A$="" THEN 200

SYS 50192 : REM TURN OFF

SUML

00FC

we can type this short BASIC

RUNning this program draws a dfagonal line from the upper

left to the lower right corner. Pressing a key returns the

Commodore 64 to the normal text mode.

Now consider how a point can be erased. The routine to

calculate the target address is the same for setting or for

167

The Machine Language Book of the Commodore 64

erasing a point. By changing line 760, you can cause the
routine to erase a pixel instead of setting it. Look at what

happens when you set a point with ORA.

previous bit pattern % 01001000
pattern for new pixel % 00010000

result of ORA % 01011000

The new point is set by using an ORA instruction. To erase
the same point use the AND instruction.

previous bit pattern $ 01011000
pattern for pixel to be erased % 00010000

result of AND $ 00010000

Something is wrong here! All the points are erased except
for the one you want to erase., The bit values must be

inverted prior to ANDing. You can can do this with the EOR

intruction.
pixel to be erased % 00010000
invert all bits $ 11111111

gives the new pattern % 11101111

Except for the point to be erased, all the bits are now set

and the AND operation with the original value works.

previous bit pattern $ 01011000
new pattern $ 11101111

correct pattern % 01001000

168

The Machine Language Book of the Commodore 64

Now add the erase function to the other routines. You can
use the carry flag to signal whether the point is to be set
or erased, If the carry flag is clear, .then the routine
erases the pixel. The routine must make note of the
condition of the carry flag. Use the PHP instruction to save
the status register on the stack, as in line 145, Examine
the flags by using a PLP instruction in line 735. Here are

the remaining changes to the program:

760 BCC ERASE

770 ORA (SUML),Y

780 BCS OK2

790 ERASE EOR #SFF ; INVERT
800 AND (SUML),Y :
810 OK2 STA (SUML)

820 LDX #$37

830 STX *1

840 CLI

850 RTS

860 .EN

If the carry flag is clear, jump to line 790 where the bits
are inverted with EOR #$FF., The AND instruction is executed
and the result is stored. If, on the other hand, the carry
flag is set, then the bit is set with ORA as before and the
new value is again stored at the target address. The

complete listing is shown below:

00FA 100 XL = SFA

00FB 110 XH = $FB

00FC 120 suML = $FC

00FD 130 SUMH = SFD

C460 140 *= $C460

C460 145 PHP

C461 85 FA 150 STA *XL

C463 86 FB 160 STX *XH ; X-COORDINATE
C465 98 170 TYA ; Y-COORDINATE

169

The Machine Language Book of the Commodore 64

C466
C468
C46A
C46C
C46E
C470
C472
C474
C476
C478
C479
C47B
C47D
C47F
Cc481
C483
C485
C487
c489
C48B
C48D
C48F
C491
C492
C494
C495
C497
C499
C49B
C49D
C49F
C4A0
C4A2
C4A4
C4a6
C4A8
C4AA
C4AC
C4AE
C4AF
C4B1
C4B3
C4B5
C4B7
C4B9
C4BB
C4BD
C4BF
C4cCl
C4C2
C4cC4
C4Cs
c4acy
c4cs
c4aca

170

29
85
85
A9
85
06
26
06
26
18
A5
65
85
A5
69
85
06
26
06
26
06
26
98
29
18
65
85
A5
69
85
18
A5
29
65
85
A5
65
85
18
A9
65
85
A9
65
85
A5
29
49

A9
CA
30
0A
DO
A0

FA
00

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680 SHIFT
690
700
710
720 OK

AND
STA
STA
LDA
STA
ASL
ROL
ASL
ROL
CLC
LDA
ADC
STA
LDA
ADC
STA
ASL
ROL
ASL
ROL
ASL
ROL
TYA
AND
CLC
ADC
STA
LDA
ADC
STA
CLC
LDA
AND
ADC
STA
LDA
ADC
STA
CLC
LDA
ADC
STA
LDA
ADC
STA
LDA
AND
EOR
TAX
LDA
DEX
BMI
ASL
BNE
LDY

#SF8
*SFE
*SUML
#0

* SUMH
*SUML
* SUMH
* SUML
* SUMH

.
’

*SUML
*SFE

*SUML
* SUMH
#0

* SUMH
* SUML
* SUMH
*SUML
* SUMH
*SUML
* SUMH

-
r

#7

*SUML
* SUML
*SUMH
#0

*SUMH

*XL
#SF8
*SUML
*SUML
*XH
* SUMH
*SUMH

#<SE000
*SUML
*SUML
#>$E000
*SUMH

* SUMH
*XL

#7

#7

#1

OK

A
SHIFT
#0

ERASE CARRY

Y-COORDINATE

The Machine Language Book of the Commodore 64

XH

#$34

*]

ERASE
(suML) , Y
OK2

#SFF
(SUML) ,Y
(SUML) , Y
#$37

*]

c4DpC
00FB

SHIFT
XL

C4CC A2 34 730 LDX

C4CE 28 735 PLP

C4CF 78 740 SEI

C4D0 86 01 750 STX

C4D2 90 04 760 BCC

C4D4 11 FC 770 ORA

C4D6 BO 04 780 BCS

C4D8 49 FF 790 ERASE EOR

C4DA 31 FC 800 AND

C4DC 91 FC 810 OK2 STA

C4DE A2 37 820 LDX

C4E0 86 01 830 STX

C4E2 58 840 CLI

C4E3 60 850 RTS
860 .EN

C460 / C4E4 / 0084

SOURCE FILE IS EXAMPLE 4.SRC

0 ERRORS

ERASE C4D8 OK C4CA

SUMH 00FD SUML 00FC

Now change the previous BASIC "test" program:

100
110
120
130
140
150
160
170
180
190
200
210
220

SYS 50176
SYS 51208 :
POKE 780,16
SYS 50240 :
I=1

POKE 780, X
POKE 781,
POKE 782,
POKE 783,
SYS 50272

GET A$: I
SYS 50192

o K ee 1 B D

REM
REM

REM SET

FOR X=0 TO 319

AND 255
AND 255
* 0.625

GRAPHICS ON
ERASE GRAPHIC IMAGE

COLOR

o o0 oo

REM X LO
REM X HI

REM Y

: REM SET/ERASE

NEXT

A$="" THEN I=1-I
REM GRAPHICS OFF

GOTO 150

C4c4
O0FA

This program draws a diagonal line across the screen and

then erases it again. The routine determines if a pixel is

to be set or erased,

by the condition of the carry flag

which is passed in memory location 783. Because the carry

flag occupies bit position zero within the status register,

the corresponding values are one and zero.

171

The Machine Language Book of the Commodore 64

You can stop the program by pressing a key. The original
screen contents is preserved, just as the graphics screen is
also preserved. When you want to switch back to high
resolution graphics mode, simply call the routine to erase
the screen and you can start anew. Now you can experiment

some more with the routine for the color representation.

100 SYS 50176 :
110 sys 51208 :
120 POKE 780,16

130 sys 50240
140 REM

150 FOR X=70 TO 150 : FOR Y=X TO 199

REM GRAPHICS ON
REM ERASE GRAPHICS

REM SET COLOR

160 POKE 780, X : REM X LO
170 POKE 781, 0 : REM X HI
180 POKE 782, Y : REM Y

190 POKE 783, 1 : REM SET

200 SYS 50272 : NEXT : NEXT

210 FOR C=0 TO 255

220 FOR I=1 TO 500 : NEXT

230 POKE 780, C

240 SYS 50240 : REM COLOR

250 NEXT

260 SYs 50192 : REM GRAPHICS OFF

This program draws a figure and then displays it in all of

the 256 possible color combinations.

To summarize, you have learned about indirect indexed
addressing; you have worked with the logical operations to
set and erase designated bits; you have also used the stack

for storing data; and you have performed 16-bit additions

and shifts,

An important programming concept still missing is the use of

subroutines. This is discussed in the next section.

©172

The Machine Language Book of the Commodore 64

8. Extending BASIC

In the previous section we passed parameters to the graphics-
routine by means of POKE commands. Now we present a more

elegant way of doing this.

This technique passes parameters the same way as parameters

are passs to the BASIC commands.

Let's take a simple BASIC command:

POKE A, B

The variables A and B are arguments for the POKE command.
The rules of BASIC allow you to use any expressions,
constants or subscripted variables in place of A and B, For

example, the following is a legal BASIC statement:

POKE A(1000)/750*INT(X%/9) ,EXP(ABS(SIN(3*A)))+2

The BASIC interpreter uses a routine in its ROMs to evaluate
the value of the expressions. You can let the BASIC
interpreter do hard evaluation work by calling this routine
from your own programs. In addition, you can perform range
checking by using various entry points to the BASIC ROM

routines.

When evaulating the arguments for the POKE routine, for

173

The Machine Language Book of the Commodore 64

example, the routines check to make sure that the first
parameter is a value between 0 and 65535 (16-bit). If not,
the error message ILLEGAL QUANTITY is issued. The routines
then check the second parameter for a value between 0 to
255, and the same error message is given if it fails this

test.
How can you use these routines in your own programs?

First you must understand a programming technique that we

have not discussed up to this point - the subroutine.

You have probably used subroutines when programming in

BASIC. The corresponding commands in BASIC are:
GOSUB and RETURN

The GOSUB command branches to a given line. It differs from
the GOTO instruction in that the interpreter remembers the
place from which it branched. When the subroutine is
finished, and the interpreter encounters a RETURN, the
previously saved return address is fetched and execution
branches back to the place from where the subroutine call

was made.

The 6510 microprocessor has two instructions for managing of
subroutines., These commands correspond exactly to their

BASIC counterparts.

174

The Machine Language Book of the Commodore 64

JSR and RTS

JSR (jump to subroutine) calls the subroutine while the RTS
instruction (return from subroutine) takes care of branching
back to the calling routine. When do you use these

instructions?

Subroutines in machine language programs are used in the
same circumstances as in BASIC. If a certain routine is to

be used more than once, it should be made into a subroutine.

What does the processor do when it encounters a JSR instruction?

Before it branches to the subroutine, it saves the current
address of the program counter so that it knows where to
return after the subroutine is complete. Where does it save

this information? It uses the stack!

A subroutine call saves the current address (two bytes) of
the program counter on the stack. Later, when the RTS
instruction is encountered, the address on the stack
replaces the program counter contents. The instruction

following the JSR is then executed.

So that the 6510 knows at which place on the stack to save
to and retrieve from, there is a register called the stack

pointer (shortened to SP). This register is a pointer to the

175

The Machine Language Book of the Commodore 64

current position of the stack. Let's see what happens when

the JSR and RTS commands are executed.

C000 20 00 C1I JSR $C100
co03

Cl100 60 RTS

When this program is started at address $C000, a call is
made to the subroutine at address $C100. In our example, the
RTS instruction is encountered immediately and the processor
returns to the instruction following the subroutine call,
which is $C003 in our case. Let's see what happens to the

stack and the stack pointer.

Address Instruction Stack pointer Stack
$C000 JSR $C100 $F9 $01F9 XX

The data from any previous operations is located at stack
address $01F9. When the processor encounters the JSR
instruction, it takes the contents of the program counter,
increments it by two and divides it into low and high bytes.
It takes the high-byte and stores it at the address to which
the stack pointer points, The stack pointer is then

decremented by one:

Address Instruction Stack pointer Stack

$C000 JSR $C000 $F8 $S01F9 CO
$SO01F8 XX

Now the low-byte of the address is saved on the stack and

176

The Machine Language Book of the Commodore 64

the stack pointer is again decremented. The program counter

is then set to the starting address of the subroutine:

Address Instruction Stack pointer Stack
$C100 RTS $F7 $01F9 CO
SO01F8 02
$01F7 XX

So during a JSR, the program counter is saved on the stack
and the stack pointer is decremented by two. The stack
pointer always points to the next free location on the

stack.

The RTS instruction performs these functions in reverse.
First the stack pointer is incremented and then the low-byte

is fetched from the stack:

Address Instruction Stack pointer Stack

$C100 RTS SF8 SO01F9 CO.
$01F8 02
$01F7 XX

The value $02 is placed into the low-byte of the program

counter. Then stack pointer is incremented:

Address Instruction Stack pointer Stack

$C100 RTS S$F9 $01F9 CO
SO01F8 02
$01F7 XX

$CO0 is pulled from the stack and becomes the high-byte of

the program counter, The program counter now contains $C002.

177

The Machine Language Book of the Commodore 64

The program counter is incremented by one and the next

instruction is fetched from $C003:

Address Instruction Stack pointer Stack

$C003 e $F9 $01F9 CO
$01F8 02
$01F7 XX

Notice that the stack pointer contains the same value after

the return from the subroutine as before the call.

It is also possible to nest subroutines with this technique.
If a subroutine is called from another subroutines, its
return address is saved on the stack. The stack pointer is
set to $F5 in our example, The last return address is
fetched by the next RTS instruction and the stack pointer is
incremented to $F7. RTS will always jumps back to the
address of the last subroutine call., Through this, it is

possible to nest levels of subroutines.

The 6510 microprocessor can save and retrieve the contents
of the accumulator and the processor stack register to and
from the stack. The commands are PHA and PLA for the
accumulator and PHP and PLP for the status register. These
commands also affect the stack pointer. Using these
instructions you can, for example, save the contents of the
status register and later retrieve it. Thus the stack can be

used as a "scratchpad”.

178

The Machine Language Book of ‘the Commodore 64

PHA ; accumulator to stack
TYA

PHA ; and Y register

TXA

PHA ; and X register

PLA

TAX ; get X register back
PLA

TAY ; and Y register

PLA ; and accumulator

The X and Y registers cannot be saved directly onto the
stack. You have to transfer the contents of the the X-
register or Y-register to the accumulator first and then
placed the contents to the stack with a PHA instruction.
Notice that the registers must be pulled from the stack in
the reverse order they were pushed on. This is in accordance
with to the principle of the stack. The last value place on
the stack is the first value retrieved from the stack - in a

last in-first out (LIFO) order.

The operation of the stack and the stack pointer can be
illustrated by the single-step simulator, After each step,
you can observe the contents of the registers. The simulator

becomes a very useful learning tool.

Now let's can return to our discussions about the BASIC

interpreter routines for passing parameters.

A routine called GETBYT in the BASIC ROMs, reads an
expression from BASIC text, checks it for a range from 0 and

255, and returns this value in the X-register.

179

The Machine Language Book of the Commodore 64

Another routine called FRMNUM, converts a expression to 16-

bit (0 to 65535) values.

The routine GETADR, checks an expression for a range from 0
to 65535, If it is valid, the low-byte of the value is
returned in memory location $14 and the high-byte of the
value is returned in memory location $15. The addresses of

these routines are listed below.

Earlier we talked about how the BASIC interpreter reads each

line character by character in order to find the BASIC

keywords. In doing so, BASIC keeps track of its place in the
line by using an internal variable called TXTPTR (for text
pointer). At any given time, TXTPTR points to the BASIC text

which the interpreter is processing.

If you want to pass a parameter from a BASIC program to a

machine language routine, you can use the BASIC command:

SYS AAAAA,PPP

AAAAA is the decimal address of the machine language
routine. PPP is the parameter that you are passing to the

machine langauge routine.

If you want to pass several parameters, you must separate
these parameters from each other with commas. The BASIC

interpreter has a routine to check for commas This routine

180

The Machine Language Book of the Commodore 64

is called CHKCOM and checks to see if TXTPTR is pointing to

a comma.

If you want to read a character directly from the BASIC
text, the routine CHRGOT gets the character pointed to by
TXTPTR and puts it into the accumulator. The routine CHRGET
does the same thing but first increments TXTPTR before

getting the character.

These routines also set certain flags which give additional
information about the character read. If the zero flag is
set, then either a zero byte (end-of-line in BASIC programs)
or a colon ":" was read, indicating the end of the

statement. If a digit is read, the carry flag is clear.

Here is a summary of the addresses:

GETBYT $B79E
FRMNUM SADSA
GETADR $B7F7
CHKCOM SAEFD

CHRGOT $0079
CHRGET $0073
GETPAR $SB7EB

To get a 16-bit parameter followed by an 8-bit parameter
such as for the POKE command, you can use the routine
GETPAR. The routine GETPAR calls the following routines in

order: FRMNUM, GETADR, CHKCOM, and GETBYT.
You can use GETPAR for the bit-mapped graphics routines

-181

The Machine Language Book of the Commodore 64

because the value for the X-coordinate is a 16-bit number
(0-319) and the value for the Y-coordinate (0-199) is an 8-
bit number. If the values exceed 65535 or 255, respectively,
the BASIC interpreter responds with ILLEGAL QUANTITY. So

GETPAR checks the ranges of the coordinates and display this

error message if required.

To use these routines for parameter passing, a call would

look like this:
SYS 50240,X,Y

When BASIC encounters this statement, it sets up to execute
the machine language routine beginning at memory location
50240. The BASIC TXTPTR is left pointing at the first comma

following the 50240.

Using this technique, you do not have to POKE the parameters

into memory. The program is also a lot easier to follow.

Now let's reprogram the graphics routines again, but

incoprorating the new techniques:

100 JSR CHKCOM ; COMMA FOLLOWING?
110 JSR GETPAR ; GET COORDINATES
i

120 STX YCOOR SAVE Y-COORDINATE
130 LDA $14

140 STA XL ; X-COORDINATE LO
150 LDA $15
160 STA XH

182

The Machine Language Book of the Commodore 64

First we check for a comma which separates the SYS address
from the X-coordinate. Next we use the routine which gets
two parameters, GETPAR. The value of the one-byte parameter,
the Y-coordinate, is returned in the X-register which we
save at the address YCOOR. The value of the second
parameter, the X-coordinate returned in $l4/$;5 and saved in
XL and XH. Now check that the X and Y-coordinates lie in the
permitted value range. If the Y-coordinate is less than 200,
it is legal, otherwise display ILLEGAL QUANTITY. The same

type of range checking is performed for the X-coordinate.-

170 CPX #200 ; Y >= 200?
180 BCC OK

190 ERROR JMP ILLEGAL
200 OK LDA XH

210 CMP #>320

220 BCC OK1

230 BNE ERROR

235 LDA XL

240 CMP #<320

250 BCS ERROR

260 OK1 ...

The remainder of the program is the same as the earlier

version,

183

The Machine Language Book of the Commodore 64

9. Input/Output Operations

In BASIC you use specific commands to input characters from
the keyboard, display them on the screen and communicate

with peripherals. Some of the BASIC commands to do this are:

OPEN
CMD
_ PRINT#

INPUT#
CLOSE

In machine language programming you use similar techniques.
The operating system already contains routines which
correspond to the BASIC commands above. You can use these

routines to perform input or output operations.

Some of the routines follows:

OPEN

This routine requires three parameters: the logical file
number, the device address, and the secondary address, and
an optional filename. These parameters are set by the
routines SETFLS and SETNAM. The OPEN routine itself needs no
parameters but it does require a prior calls to the other

routines.

-184

The Machine Language Book of the Commodore 64

SETFLS

To use SETLFS, load the accumulator with the 1logical
filenumber, the X-register with the device number, and the
Y-register with the secondary address and then call this

routine to set these parameters for the OPEN routine.

SETNAM

This routine is defines a filename. Load the accumulator
with the of the filename (0 indicates that no filename will
be used); place the address of the filename (the first

memory location it is stored in) in the X-registser (low-

byte) and Y-register (high-byte).

PRINT

Load the accumulator with the character you wish to output
and then call this routine. Normally the output goes to the
screen, If you want to output to the printer, for example,
you must first open a file to the printer (device 4) with

the OPEN routine and then call the next routine.

. 185

The Machine Language Book of the Commodore 64

CHKOUT

This routine corresponds to the CMD instruction in BASIC. To
output a character to an opened file, load the X-register
with the logical file number and call the subroutine CHKOUT.
All output from the PRINT instruction is sent to this device

until cancelled with the next routine, -

CLRCH

CLRCH cancels the CMD mode set by the CHKOUT instruction. It

requires no parameters.

INPUT

This routine gets a character from the keyboard and returns

it in the accumulator. To read data from a file, first open

and then activate it with the next routine.

CHKIN

Load the logical file number in the X-register and call this

routine., After calling this routine, all input is read from

this device until cancelled with CLRCH.

186

The Machine Language Book of the Commodore 64

CLOSE

Load the logical file number into the accumulator and call

this routine to close a file.

The following table cohtains the addresses of these

routines.

Routine Address

OPEN $FFCO
SETFLS $FFBA
SETNAM $FFBD

PRINT SFFD2
CHKOUT SFFC9
CLRCH $FFCC
INPUT SFFCF
CHKIN SFFC6
CLOSE $FFC3

To demonstrate how to use these routines, let's convert the

following BASIC commands to machine language:

OPEN 1,8,15
PRINT# 1,"I"

CLOSE 1
100 LDA #1 ; LOGICAL FILE NUMBER
110 LDX #8 ; DEVICE NUMBER

120 LDY #15 ; SECONDARY ADDRESS
130 JSR SETFLS

140 LDA #0

150 JSR SETNAM ; NO NAME

160 JSR OPEN ; OPEN FILE

170 LDX #1 ; LOGICAL FILE NUMBER
180 JSR CHKOUT ; OUTPUT TO FILE
190 LDA #73 ; "1"

200 JSR PRINT

210 JSR CLRCH

220 LDA #1 ; LOGICAL FILE NUMBER
230 JSR CLOSE

240 RTS

187

The Machine Language Book of the Commodore 64

Lines 100 to 130 setup the parameters for the OPEN. There is
no filename, so the length of the filename is set to zero in
line 140 to 150. Line 160 OPENs the file. Now output to the
logical file 1 is enabled (lines 170-180) and the ASCII
value of "I" is transmitted to the disk (device 8) by the
PRINT routine to initialize the diskette. Routine CLRCH,
redirects output to the screen, Finally, lines 220 and 230
CLOSEs the file and execution returns to BASIC (or other

calling program) with the RTS.

The next example, reads the error channel of the disk drive
and display the error message on the screen. You can do this

in BASIC like this:

100 OPEN 1,8,15
110 INPUT#1, A,BS,
120 PRINT A; B$; C
130 CLOSE 1

c,D
;s D

Because we can output the error message directly to the
screen, we need no variables in our program. We simply read
characters from the channel until the status variable ST, is

equal to 64, signaling the end of the error message. We can

do this with the following BASIC program:

100 OPEN 1,8,15

110 GET#1, A$: PRINT AS;
120 IF ST <> 64 THEN 110
130 CLOSE 1

To do this in machine language, you must know that the

188

The Machine Language Book of the Commodore 64

status variable of the operating system ST, is stored in

location 144 or $90. Let's try the machine language version:

10 OPEN = SFFCO

20 SETFLS = SFFBA

30 SETNAM = SFFBD

40 PRINT = S$SFFD2

50 CLRCH = $FFCC

60 INPUT = SFFCF

70 CHKIN = $FFC6

80 CLOSE = SFFC3

90 STATUS = $90 ; STATUS VARIABLE
100 LDA #1 ; LOGICAL FILE NUMBER
110 LDX #8 ; DEVICE NUMBER

120 LDY #15 ; SECONDARY ADDRESS

130 JSR SETFLS

140 LDA #0

150 JSR SETNAM ; NO NAME

160 JSR OPEN ; OPEN FILE

170 LDX #1 ; LOGICAL FILE NUMBER

180 JSR CHKIN ; INPUT FROM ERROR CHANNEL

190 L1 JSR INPUT ; GET CHARACTER
200 JSR PRINT ; AND OUTPUT

210 BIT STATUS ; TEST STATUS

220 BVC L1

230 JSR CLRCH ; INPUT FROM DEFAULT
240 LDA #1

250 JSR CLOSE

260 RTS

270 .EN

The routine from the previous program for OPENing the file
is the same. This time, we input data from the file. Lines
170 and 180 setup to do this. The X-register is loaded with
the logical file number i and the routine CHKIN is called.
Input is now read from the disk'drive. Line 190 reads a
character from the disk and line 200 writes it to the screen
with JSR PRINT. The output goes to the screen because we did
not previously use CHKOUT. The statué variable ST is tested
with the BIT inst;uction. If the end of the file is reached,

status variable ST is set to 64. 64 is equal to 26 or

189

The Machine Language Book of the Commodore 64

$01000000 in binary. Therefore bit 6 of this memory location
is set at end of file., What does the BIT instruction do? It
copies bit 6 of the addressed memory location into the V
flag and bit 7 into the N flag. After the BIT instruction,
you need only test to see if the V flag is set. The
instruction BVC branches if the V flag is clear. In this
case, the end has not been reached and we branch back to the
read more from the disk. If the V flag is set, we reset the

input channel with JSR CLRCH and close the file.

Assemble this program and try it out. Remember, however,

that our assembler allows a maximum of only five characters

for symbol names.

10: Cc000 OPEN = SFFCO

20: Cc000 SETFLS = SFFBA

30: Cc000 SETNAM = SFFBD

40: Cc000 PRINT = SFFD2 -

50: Cc000 CLRCH = $SFFCC

60: c000 INPUT = SFFCF

70: c000 CHKIN = SFFC6

80: c000 CLOSE = SFFC3

90: Cc000 STATUS = $90

100: Cc000 A9 01 LDA #1 ; LOGICAL FILE NUMBER
110: Cc002 A2 08 LDX #8 ;DEVICE NUMBER

120: C004 A0 OF LDY #15 : SECONDARY ADDRESS
130: C006 20 BA FF JSR SETFLS

140: Cc009 A9 00 LDA #0 ;NO FILENAME

150: C00B 20 BD FF JSR SETNAM

160: COOE 20 CO FF JSR OPEN ;OPEN FILE

170: c0ll A2 01 LDX #1 ;s INPUT

180: Cc013 20 C6 FF JSR CHKIN !FROM ERROR CHANNEL
190: C016 20 CF FF Ll JSR INPUT ;CHARACTER FROM DISK
200: C019 20 D2 FF JSR PRINT ;AND OUTPUT

210: C01C 24 90 BIT STATUS ;TEST STATUS

220: COlE 50 F6 BVC L1

230: C020 20 CC FF JSR CLRCH

240: €023 A9 01 LDA #1

250 C025 20 C3 FF JSR CLOSE ;CLOSE FILE

260: Cc028 60 RTS

190

The Machine Language Book of the Commodore 64

Now you can try out the machine language routine by typings:

SYS 49152

The error message from the disk appears on the screen, such

00, OK,00,00

)

191

The Machine Language Book of the Commodore 64

10. A BASIC Loader Program

You can enter the machine language program as a sequence of
numbers in DATA statements. They can be READ by a BASIC
program and stored in memory with POKE. You can output the
values in decimal by means of a small BASIC program and
insert these as DATA statements in a loader program. Here is

a program written in BASIC, which does this automatically.

It is used as follows. First load your machine language
program, Then type in the following BASIC program and RUN
it. You are now asked to enter the starting and ending
addresses of the machine language program. The program
creates a complete loader program on the printer with an
automatically generated checksum. The checksum is simply the
sum of all the values. The values are summed while being
loaded and the checksum contained within the program is
checked against the value generated by the program. If the
two values aren't equal, an appropriate message is

displayed.

By doing this you can determine if the user made an error

while typing in the data.

100 OPEN 1,4 : Zz = 100

110 INPUT "START ADDRESS ";A

120 INPUT "END ADDRESS ";E

130 CMD1 : PRINT Z "FOR I =" A "TO" E

140 I=A : 2Z2=2+10 PRINT Z "READ X : POKE I,X : S=S+X :
150 2=2+10 : N=0 PRINT Z "DATA ";

.
H
.
H

192

NEXT"

The Machine Language Book of the Commodore 64

160 X=PEEK(I) : S=S+X PRINT RIGHTS(" "+STRS(X),3);:N=N+1
170 IF I=E THEN PRINT GOTO200
180 I=I+1:IF N=12 THEN PRINT:GOTO150
190 PRINT ",";:GOTO160
200 PRINT 2+10 "IF S<>" S "THEN PRINT" CHRS(34) "ERROR
IN DATA !!" CHRS$(34) : PRINT " : END" : END
210 PRINT 2Z+20 "PRINT " CHRS$(34) "OK" CHRS(34)
220 PRINT#1:CLOSE1 -

.
.
.
.

193

The Machine Language Book of the Commodore 64

11. 6510 Disassembler

This section contains a program called a disassembler. The
purpose of a disassembler is to translate machine language
programs in memory back to the mnemonics used for entering
assembly language programs., From the sequence $A9, $80, for
example, the disassembler generates LDA #$80. The
disassembler is simply started with RUN and it asks for the
starting and ending addresses of the memory range to
disassemble., The output then appears on the screen, but it

can be redirected to the printer with an appropriate OPEN

instruction and CMD assignment.

Here's a brief description of the operation of the
disassembler. The program gets a byte from memory and
interprets it as an operation code. This op code serves as
an index in a table of instruction mnemonics, instruction
lengths and addressing modes. The disassembler knows the
form of the operand and where the next instruction begins

from these tables.

The disassembler can be used for your own machine language
programs as well as for the disassembly of the operating
system and BASIC interpreter. You can often find hints and
tips for your own programs there. Better yet is the
commented listing of operating system which you can find in

The Anatomy of the Commodore 64.

194

The Machine Language Book of the Commodore 64

Here is the disassembler listing.

100 REM 6510 DISASSEMELER

110 DIMMNE (255) ,AD(255) ,H$(1D)

120 FF=285:HI=206:UL=2116:8C=2115-1

130 PRINT" {CLR3 {C/DN3}{C/DNX {C/DN} {C/RT}{C/RT}{C/RT}{C/RTI{C/RTILC/RT
{C/R13LC/R1 2{C/RTI{C/RTI(C/RTI6510 DISASSEMELER"

140 FORI=0TO15: READH$ (1) : NEXT

150 FORI=0TO25S:READMN$ (1) ,AD(I) :NEXT

160 PRINT"{C/DNXSTART ADDRESS: - Fx##% (C/LFX{C/LF3{C/LF3{C/LF3 {C/LF}
170 GOSUBS40: S=A
180 PRINT"{C/DNX}END ADDRESS :- Fxuk® {C/LFY{C/LF3{C/LF}{(C/LF}{C/LF2}

{C/LF3"3:: INPUTA$: PRINT

190 BOSURSA40:E=A

200 FORP=STOE

210 A=F:GOSUB450:REM ADDRESS

220 PRINT" "j:A=PEEK (P):BOSUB480: PRINT" ";:I=PEEK (F): DF=AD(I)
230 ONDPGOSUES10,520,520,510,530,520,520,530,530,520,520, 520,530
240 PRINT" "jMNS(I)" ";

250 ONDPGOSUB270,280,290,300,310,320,330,340,350,360,370, 380,400
260 NEXTF:BOTD160

270 PRINT:RETURN

280 PRINT"#";:G0SUB490: P=P+1: PRINT: RETURN

290 GOSUR490:P=P+1:PRINT:RETURN

300 PRINT" A":RETURN

310 BOSUB420:P=P+2:PRINT: RETURN

320 GOSUR490:P=F+1:PRINT",X":RETURN

330 GOSUB490:P=P+1:PRINT",Y":RETURN

340 BOSUE420:P=P+2:PRINT",X": RETURN

350 BGOSURA20:P=P+2: PRINT",Y": RETURN

360 PRINT" (";:BOSUE490: P=P+1:PRINT") ,Y": RETURN

370 PRINT" (";:GOSUB490: P=P+1:PRINT",X) ": RETURN

380 T=PEEK (P+1) : B=T+HI* (T>127) +2+F

390 A=INT(B/HI) #HI+((0+(2>SC) *UL) ANDFF) : PRINT"$" 5 : GOSUB4S0: P=F+13
400 PRINT" (";:GOSUE420

410 PRINT")":P=P+2:RETURN

420 PRINT"$";

430 A=PEEK (F+1) +HI*PEEK (P+2)

440 REM HEX ADDRESS A

450 HE=INT (A/HI) : A=A—HI*HE

460 PRINTHS (HB/16) H$ (HRAND1S) 5

470 REM HEX EYTE A

480 PRINTHS(A/16)H$ (AAND1S) ; : RETURN

490 PRINT"$";

500 A=PEEK (P+1) : GATDABO0

510 PRINT" "3 : RETURN
S20 GOSUBRSOO:PRINT" "3 :RETURN
530 GOSURSOO:PRINT' "j:A=FEEK (F+2):60T0480

540 IFASC (A%$)=42THENEND

550 A=0:FORI=1TD4:V=ASC (RIGHT# (AF,1)) —46:V=V+(V3Q) ¥7: A=A+Ux (16T
(I-1)) sNEXT: RE IIIRN

1000 DATA 0,1,2,3,4,%,6,7,8,9,A,K,C,D,E,F

1010 DATA"BRK",1,"0RA",11,"7277",1

1020 DATA"?7??",1,"777",1," "0RA", 3

1030 DATA"ASL",3,"??7",1,"FHF", 1

1040 DATA"DRA",2,"ASL",4,"777", 1

1050 DATA"?7?",1,"DRA",5,"ASL",5

195

The

1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
18520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

196

Machine Language Book of the Commodore 64

DATA"?72", 1, "BFL", 12, "ORA" , 10
DATA" P24 1, n727n 1, wonan 1
DATA"ORA" , 6, "ASL", &, 277" 1
DATA"CLE", 1, "ORA",9, 277" 1
DATA"?77% 1,272 | "ORA".8
DATA"ASL", 8, "?77", 1, "JSR" .5
DATA"AND" , 11, %7774 1, n299n 1
DATA"BIT",3, "AND" , 3, "ROL" , 3
DATA"?227% 1, "PLP", 1, "AND" .2
DATA"ROL" .4, " 277" 1 1 J"BIT" .5
DATA"AND", 5, "ROL" 15, " 227" 1
DATA"EMI", 12, "AND", 10, %7777 1
DATA"??7% 11,2727 1, "AND" , 6
DATA"ROL" ,6, " 727" 1, "SEC" | 1
DATAAND" 5, #7770, 1, npmpn . |
DATA" 777" ,1,"AND" .8, "ROL" .8
DATA"?27", 1, "RTI1" .1, "EOR" .11
DATA"??7" 1, %9974 1, 9977% 1
DATA"EOR", 3, "LSR" .3, "272" 1
DATA"PHA" ,1,"EOR",2, "LGR" .4
DATA"72" 1, "IMP",5, "EOR" .5
DATA"LSR" ,5, " 227", 1, "BUC" , 12
DATA"EDR" , 10, 77274, 1, %2770, 1
DATA"??7" 1, "EOR" , 6, "LSR" , &
1,"CLI",1,"EOR",9
11, mmepn g waonn
DATA"EDR",8, "LSR", 8, "277% 1
DATA"RTS",I,"ADC",]I,"???",1
DATA"P?2", 1, 42774 1, "ADC" , 3
DATA"ROR™ , 3, "277") 1, "PLA" | 1
DATA"ADC", 2, "ROR" | 4, "977 1
DATA"IMP" , 13, "ADC" , 5, "ROR™ , 5
DATA"?77% 1, "BVS" , 12, "ADC" , 10
DATA" 274, 1 na9pn . | wooou 1
DATA"ADC" , 6, "ROR" , &, "277" 1
DATA"SEI",1,"ADC",9, 277" 1
DATA"?774 .1, 277" 1, "ADC" .8
DATA"ROR",8,"???",1,"???2",1
DATA"STA",11,"777% 1, "2770 1
DATA"STY" .3, "GTA" 3, "STX" , 3
DATA"222" 1, "DEY" ,1,"277",1
DATA"TXAY 1,777 1 "GTY" .5
DATA"STA" |5, "STX" 5, 29741
DATA"ECCY , 12, "STA", 10, 777" 1
DATA"?774 1, "STY", 6, "STA" , 6
DATA"STX",7," 777" ,1,"TYA" 1
DATA"STA",9, "TXG", 1, 9770 1
DATA" 274 | L, "GTA" 8, " 277" 11
DATA" PP 1, "LDY" .2, "LDA", 11
DATA"LDX" ,2, #9274, 1, "LDY" .3
DATA"LDA" 3, "LDX" ,J,"2?7",1
DATA"TAY" ,1,"LDA",2,"TAX",1
DATA"27% 11, "LDY" 5, "LDA" .5
DATA"LDX" 5,227, 1, "BCS" , 12
DATA"LDA" ,10,"277 1,277, 1
DATA"LDY" &, "LDA" ,&, "LDX" ,7
DATAR?79 1, "CLY™, 1, "LDA" .9
DATA"TSX",1,"277% 1, "LDY",8

The Machine Language Book of the Commodore 64

1640 DATA"LDA",8,"LDX",9,"7?77",1
1650 DATA"CPY",2,"CMP",11,"?77",1
1660 DATA"?77",1,"CPY" 3, "CMP",3
1670 DATA"DEC",3,"7?77?",1,"INY",1
1680 DATA"CMP",2,"DEX",1,"???",1
1690 DATA"CPY",S,"CMP",5,"DEC",5
1700 DATA"?77",1,"BNE",12,"CMP",10
1710 DATA"???M 1,277, 1,227 1
1720 DATA"CMP",6,"DEC" ,6,"?77",1
1730 DATA"CLD",1,"CMP",9,"?772",1
1740 DATA"?77",1,"7?77",1,"CMP",8
1750 DATA"DEC",8,"?7?7",1,"CPX",2
1760 DATA"SEC",11,"777",1,"?277",1
1770 DATA"CPX",3,"SBC",3,"INC",3
1780 DATA"??7",1,"INX",1,"SBC",2
1790 DATA"NOP",1,"?77",1,"CPX",S
1800 DATA"SBC",S,"INC",5,"?77",1
1810 DATA"BEQ",12,"SBC",10,"?77",1
1820 DATA"?77",1,"?77",1,"SBC",6
1830 DATA"INC",6,"?77",1,"SED",1
1840 DATA"SEC",9,"?77",1,"?77",1
1850 DATA"???",1,"SBC",8,"INC",8
1860 DATA"?77",1

197

The Machine ﬁanguage Book of the Commodore 64

Program Description

100
160

200

280
420

540
1000

198

150
190

260

410
530

550
1860

Initialization; build tables

Prompt for starting and ending addresses for the
disassembly and conversion to decimal.

FOR-NEXT loop for disassembly from starting to
ending address. Line 220 gets the instruction
code and the current address is output. Line 230
outputs the operands depending on the address
mode, Line 240 outputs the instruction mnemonic.
Line 250 displays the operand corresponding to
the addressing mode. Line 260 ends the loop and
jumps back to the input.

Output the operand as the address mode dictates.,
Output hexadecimal forms of bytes and addresses.
Conversion of a hex number to decimal,

Tables containing the instruction mnemonics and
addressing modes.

The Machine Language Book of the Commodore 64

Variable Description

MNS$ (255)
AD(255)
H$(15)
FF

HI

uL

sC

A$

OP

Table of instruction words

Table of address modes

Field with hex digits

constant 255

constant 256

constant 65536

constant 32767

string variable for hex number
start address

end address

program counter

addressing mode

199

The Machine Language Book of the Commodore 64

12. Using a Machine Language Monitor

Here's another tool to aid in machine language development.

The tool is called a monitor.

A moni;or can be used to enter machine language programs.
You can displays and changes the contents of memory
locations and the registers., Additionally, you can save and
load machine language programs to tape or diskette. You can
execute machine language programs from it, If you end such a
program with a BRK instruction, control is returned to the

monitor and the contents of the registers are be displayed.

The following is an explaination of the commands available
with the SUPERMON monitor., SUPERMON is a public domain
monitor written by well know Commodore expert Jim
Butterfield who has given us so many useful tools., SUPERMON
is available free of charge from many sources including most
local user groups. We have explained the use of SUPERMON

beacuse it is so widely available.

SUPERMON is started by LOAD "SUPERMON",8 and activated

with RUN. The monitor responds with:

«.JIM BUTTERFIELD

B*
PC SR AC XR YR SP
.7 9835 31 40 E6 00 F6

B indicates that the monitor was entered by "BRK".

200

The Machine Language Book of the Commodore 64

The labels are as follows:

PC program counter

SR status register
AC accumulator

XR x-register

YR y-register

SP stack pointer

The contents of those registers appear below the labels. You
can change the contents of any register by moving the cursor
over the old contents, overwriting it with the new value,
and pressing the <RETURN> key. If you want to change the

flags, the status register must be changed.

SUPERMON uses the period . as its prompt. When you see the

period on the screen, SUPERMON is asking you to enter a

command,

You can display the register contents at any time by

entering R at the prompt:

R

and pressing the <RETURN> key. The contents of the registers

is displayed, just as above.

The next command displays and allows you to change the
contents of memory. At the prompt, enter M followed by the
first and last address you wish to see. The starting and

ending addresses are entered as four-digit hexadecimal

201

The Machine Language Book of the Commodore 64

numbers such as:

.M AOAO0 AOAF
.3 AOA0O C4 46 4F D2 4E 45 58 D4
.3 AOA8 44 41 54 Cl 49 4E 50 55

SUPERMON displays the contents memory below your entry. You

can interpret the output in the following way:

An address is displayed after the colon. This is the address
of the first of eight following bytes. In this example,
address $AO0AO0 contains the value $C4. Address $A0Al contains
$46, and so on. A total of eight bytes are displayed per
line. SUPERMON displays as many lines as specified by the

address range which you entered.

To change a single byte in memory, move the cursor over the
0ld value, type in the new value, and press the <RETURN>

key.

If you want to execute a program, use the instruction G, If

the program starts at address $CF20, enter

.G CF20

This begins the execution of a machine language program
beginning at the specified address., First, however, the
registers are be loaded with the values displayed with the R

command., The last instruction in the machine language

202

The Machine Language Book of the Commodore 64

program should be BRK which causes execution to return to
the monitor when the program is done. When a BRK is
executed, the register contents are then automatically
displayed, as below:

B*

PC SR AC XR YR SP
.; CF39 B3 8F 73 BO F6

The B indicates that your program ended with a BRK
instruction and that the monitor was entered by means of
this BRK instruction., The program counter points to the byte
immediately after the BRK instruction, If you have several
BRK commands in your program, this information tells you at

which point your program was stopped.

Knowing this, you can develop the following method for

testing and debugging programs. Place BRK instructions at
all of the important locations in the program so that the
program stops at these points., Then check the register
contents and data in memory. If the program has run properly
up to this point, replace the BRK instruction with the
original instruction and place a BRK instruction at the next
critical location, This way you can test your program step

by step until it runs to your satisfaction.
Loading and saving programs is accomplished through the use
of the L and S commands. The following syntax is used:

.L "NAME",XX

203

The Machine Language Book of the Commodore 64

To load a program type the name of the program in
quotation mérks followed by a comma separating it the device
address given as a two-digit hex number area . If you want
to load the program GRAPHIC from disk, for example, the

instruction would look like this:
.L "GRAPHIC",08

If you want to load from cassette, you use the device

address O01.
.L "GRAPHICS",01

The SAVE command works the same way. Because the computer
must know the memory range to save, it is necessary to give
a starting and an ending address., The ending address must be
one greater than the last byte you want to save. The command

looks like this:
.S "PROGRAM",08,7000,8000

It writes the memory range from $7000 to $7FFF to the disk
under the name "PROGRAM". Here too the device address 01 can

be entered in order to save to the cassette drive.

Another function of SUPERMON is the built-in disassembler.
By entering D followed by an address range you can display

machine language programs on the screen in disassembled

- 204

The Machine Language Book of the Commodore 64

format. The format is the same as that used by the

disassembler written earlier in BASIC. If you enter the
following instruction:

.D B824 B82C

the following is displayed:

., B824 20 EB B7 JSR $B7EB

., B827 8A TXA

., B828 A0 00 LDY #$00

., B82Aa 91 14 STA ($14),Y
., B82C 60 RTS

We disassembled a part of the BASIC interpreter which

performs the POKE command.

Another useful command in SUPERMON allows one area of memory
to be copied to another. Enter the starting and ending
addresses of the area to be copied and the starting address
of the destination area. The contents of the original area

are left unchanged.

.T 6000 6FFF 3000

copies the area from $6000 to $6FFF to the addresses from

$3000 to S$3FFF.

Another wuseful function hunt command. With this command you

205

The Machine Language Book of the Commodore 64

can search for specific values in memory. The results

displayed are the addresses at which those values are found.

.H E000 EFFF 20 D2 FF

searches through the memory range from $E000 to SEFFF for
the values $20, $D2, $FF. This command will display a list
of addresses at which these values were found. In this

example we would see:
El0C
SUPERMON found the values 20 D2 FF at the area of memory

starting at E10C.

Another command fills memory with a particular value. With

this you can £ill a range of memory with constant values.

.F 8000 8FFF 00

fills the area from $8000 to $8FFF with zero bytes.
You can use the next command to assemble single lines of
machine language. By entering the following:
.A 0800 LDA #SFF
SUPERMON will assemble the machine language codes A9 FF into

memory beginning at $0800. This function makes it easy to

enter short machine language program.

206

The Machine Language Book of the Commodore 64

The last command exits from SUPERMON and returns you to the’

BASIC interpreter. Simply enter:

X

and the interpreter will respond with READY. If you later
wish to use the monitor again, you can return to it by

entering

SYS 49152

207

The Machine Language Book of the Commodore 64

208

Addressing Modes and Operation Codes

MNEMONIC
*

ADC
AND
ASL
BIT
CMP
CPX
CPY
DEC
EOR
INC
LDA
LDX
LDY
LSR
ORA
ROL
ROR
SBC
STA
STX
STY

APPENDIX A -

AB
6D
2D
0E
2C
CD
EC
cC
CE
4D
EE
AD
AE
AC
4E
0D
2E
6E
ED
8D
8E
8C

ABX ABY ZPX

7D
3D
1E
DD

DD
5D
FD
BD
BC
5E
1D
3E
7E
FD
9D

79
39

D9
59
B9
BE

19

F9
99

75
35
16
D5

D6
55
F6
B5
B4
56
15
36
76
F5
95

94

The Machine Language Book of the Commodore 64

Branch
Instr.

Transfer
Instr.

Stack
Instr.

Jump
Instr.

Flag
Instr.

Inc/Dec
Instr.

APPENDIX B

Grouped Instructions

BPL
10

TXA
8A

PHP
08

BRK
00

CLC
18

DEY
88

BMI
30

TAX
PLP
28

JSR
20

SEC
38

INY
c8

BVC
50

TYA
98

PHA
48

RTI
40

CLI
58

DEX
CA

BVS

TAY
A8

PLA
68

RTS
60

SEI
78

INX
E8

BCC
90

TSX
BA

JMP
4C

CLV
B8

BCS
BO

TXS
9A

JMP
6C

CLD
D8

BNE BEO
DO FO

NOP
EA

SED
F8

209

The Machine Language Book of the Commodore 64

210

Conversion Table

Decimal
0

OOV WN -

Hex
00
01
02
03
04
05
06
07
08
09
0A
0B
ocC
0D
0E
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30

APPENDIX C

Binary
00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000

Decimal

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Hex
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53

Decimal - Hexadecimal - Binary

Binar
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010

Decimal
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

The Machine Language Book of the Commodore 64

Hex
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93

Binary
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111
10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011

Decimal

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

Hex
94
95
96
97
98
99
9A
9B

9C
9D
9E
9F
A0
Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bl

B2
B3

B4
B5
B6
B7
B8
B9

BA
BB
BC
BD
BE

BF

co

Cl

Cc2

C3

C4

Binary
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011

10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11000000
11000001
11000010
11000011
11000100

211

fhe Machine Language Book of the Commodore 64

212

Decimal
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

Hex
C5
Cé
Cc7
c8
co
CA
CB
CcC
CD
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
El
E2

Binary
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010

Decimal

227
228
229
230
231
232
233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Hex
E3
E4
E5
E6
E7
E8
E9

EA .

EB
EC
ED
EE
EF
FO
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

Binary
11100011
11100100
11100101
11100110
11100111
11101000
11101001

11101010
11101011

-11101100

11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

The Machine Language Book of the Commodore 64

APPENDIX D

[4 poxapuy X ‘3d08a1put Ao
4 3098a1pul ‘paxapul X (x*
z 23epaut $
z paxaputr X ‘abed oaaz xdz
z paxaput X ‘obed oasz Xdz
4 abed oaez dz
€ 30811pUt ani
€ paxapuy X ‘ajntosqe xav
€ paxapul X ‘a3nfosqe Xav
€ ajnfosqe av
1 J03e1NWNDOR v
y3bua1 9pOW uoT3eTA2IqQV
uor3ldnajsul burssaappv

:sbutueau BuymoT(o3 8y3 aaey opow Buisseappe oyl 103 suorierasiqqe ayl

*6b$ o2pod comvmuoml ay3y sey # yo3 :arduexd

*apoado

ay3 jo a1qqiu

MOT oy3 soaib auyy doj a8yl ariym opoodo ay3 3Jo a1qqAu ybr1y 2yl saA1b uwNTOd Fsow-33al BYL
:SMOTTO3 Se afqel 9yl woij paulwaalap aq ued sapod uorjeiado ayl

X8V ONI X4V DdS X4V JdS ads XdZ ONI Xdz DJ€S X'(o8s o3d 4
4V ONI dv DdS d¥ Xdd dON # 04s XNI dZ ONI dz J24S d2Z XdD (x* ous 4 XdO 3
X8V Jda x8v dwWd X8Y dWO a1 Xdz 23 XdZ dWd A'(dWD ang a
6V 03 4v¥ dWd €v¥ AdD Xaa 4 dWd ANI dZ 03 dZ dWd dZ XdD (X’ dWd # XdD O
A4V XQ7T X8V va1 Xav a1 XS1L X€V val ATD AdZ XQA71 XdZ VAT XdZ X471 X(va1 sod €
v Xa1 v val 8av X4l XVl # val AVL dz Xa1 dz vd1 dz XQ1 # Xa1 (x’ va1 # RQ1 V¥
Xav vis SXL X6Y V1S VAL AdZ XIS XdZ VLS XdZ ALS A‘(VLS 204 6

v XIS ¢V VLS €V ALS VXL X3d dZ XIS dZ VIS dzZ AlLS (X' VIS 8
Xdv 3Oy X4v Dav X4vY Oav IS XdZ ¥0d Xdz DJav X*(oav sad L
gV J0d 4V DaV AONI dWlL VYV dOd # oav V¥ild dzZ 304 dzZ Oav (x* oav SId 9
Xdv ¥ST X4V d03 A4V 403 ITD XdZ ¥S7T XdZ ¥0d A‘(¥oa oAd S
gV dST €V d03 4V dWlL V ¥S1 4 403 VYHd dZ ¥4S1 dZ d¥03 (x* ¥o3 I ¢
Xav JOd X8V aONV AgVY AGNV 23S XdZ 704 XdZ ANV A‘(GN¥Y IWd €
8V 704 €v ANV 4V 1LI€ V T0d # anv d1ld dz ‘104 dZ QNV dZ 1189 (X’ anv dyse T
Xav ISV X8V W0 X9V WO 0710 XdZ ISV Xdz WO X‘(vd0 148 1.
gy ISV 8v Vo ¥ ISY 4 ©o dHd dZ ISV dZ WO (X’ w0 a0

a a o] v 6 8 9 S v [4 1 0
89p0) uoyIONIISUI OTS9 JO °OIqel

d XIAN3ddv

213

The Machine Language Book of the Commodore 64

APPENDIX E
OPERATION CODES AND FLAG SETTINGS

* Bit map
ADC 011XXX01
AND 001Xxx01
ASL 000XXX10
BCC 10010000
BCS 10110000
BEOQ 11110000
BIT 0010X100 M M X
BMI 00110000
BNE 10010000
BPL 00010000
BRK 00000000 1 1
BVC 01010000
BVS 01110000
CLC 00011000

v B D I
X

XXX 2
XXX N

CLD 11011000 0

CLI 01011000 0

CLV 10111000 0

CMP 110XXX01 X X
CPX 1110XX00 X X
CPY 1100XX00 X X
DEC 110XX110 X X
DEX 11001010 X X
DEY 10001000 X X
EOR 010XXX01 X X
INC 000XX110 X X
INX 11101000 X X
INY 11001000 X X
JMP 01X01100

JSR 00100000

LDA 101XXX01 X X
LDX 101XXX10 X X
LDY 101XXX00 0 X
NOP 11101010

ORA 000XXx01 X X

214

X X

TYA

The Machine Language Book of the Commodore 64

Bit map
01001000
00001000
01101000
00101000
001XXX10
011XXX10
01000000
01100000
111XxXX01
00111000
11111000
01111000
100XXX01
100XX110
100xX100
10101010
10101000
10111010
10001010
10011010
10011000

2

MM X X

MO XX

MM X XXX

KX XXX

=X XX X X

If the bit map of a instruction contains one or more Xs,
these bits are dependent on the address mode. An X in a flag

column indicates that that flag
instruction.
respectively.

is affected by the
A 0 or 1 means that the flag is cleared or set,

If no entry is given under a particular flag,
the instruction in question does not affect that flag.

215

The Machine Language Book of the Commodore 64

APPENDIX F

OPTIONAL DISKETTE ORDERING INFORMATION

The listings in this book for the LEA Assembler, 6510
Single-step Simulator, Disassembler and SUPERMON monitor are
available on a ready to run 1541 Format Diskette.

By purchasing this diskette, you can eliminate typing these
programs into your Commodore 64 from the listings.

The programs on the diskette have been fully tested and are
available for $14.95 + $2.00 ($5.00 foreign) postage and
handling charge.

To order, send name, address and a check, money order or
credit card information to:

ABACUS SOFTWARE
P.0O. BOX 7211
GRAND RAPIDS, MI 49510
For fast service, order by phone - 616 / 241-5510.

Be sure to ask for the "Optional Diskette for the Machine
Language Book for the Commodore 64"

916

XREF-64 BASIC CROSS REFERENCE

CADPAK-64

This tool allows you to locate those hard-to-find 1n your prog
Cross-references all tokens (key words), varniables and constanls in sorted
order. You can even add you own tokens from other software such as
ULTRABASIC or VICTREE. Listings to screen or all ASCHl printers.

DISK $17.95
SYNTHY-64
This 1s renowned as the hnest music synthesizers available at any pnice.
Others may have a lot of onscreen frills. but SYNTHY-64 makes music belter
than them al!. Nothing comes close 1o the performance of this package
Includes manual with tutonal, sample music

DISK $27.95 TAPE $24.95

ULTRABASIC-64
This adds 50 p: (many found in VIDEO BASIC,
above) - HIRES. MULTI DOT. DRAW, CIRCLE. BOX. FILL. JOY, TURTLE.
MOVE. TURN. HARD. SOUND. SPRITE. ROTATE. more All commands
are easy to use. Includes manual with two-part tutonial and demo.

. DISK $27.95 TAPE $24.95

CHARTPAK-64

This finest charting package diaws pre. bar and hine charts and graphs from
your data or DIF. Multiplan and Busicalc hiles Charts are drawn in any of

This design fealures - two Hires
screens; draw LINEs, RAYs, CIRCLEs. BOXESs; freehand DRAW:; FILL with
patlerns; COPY areas; SAVE/RECALL pictures; define and use intricate
OBJECTS: insert text on screen; UNDO last function. Requires high quality
lightpen. We recommend McPen. Includes manual with tutorial.

DISK $49.95 McPen lightpen $48.95
MASTER 64
This adds 100 p

commands to BASIC including fast ISAM indexed files; snmphhed yet
sophnsncaled screen and printer management. programmer’s a-d BASIC

22-digit guage monitor. R
oackage for royalty-Iree of your 150pp.
manual.
DISK $84.95
VIDEO BASIC-64
This superb and sound lets you write soft-
ware for without roy Has hires, . sprite and

turtle graphics; audio commands for simple or complex music and sound
effects. iwo sizes of hardcopy to most dot matrix printers; game features
such as sprite collision detection. hightpen, game paddle. memory

2 tornmnats Change format and build another cnart
1o MPS801. Epson, Okidata. Prownler Includes manual and tulonal

DISK $42.95
CHARTPLOT-64
Same as CHARTPACK-64 for highest quahity oulput 1o mosl popular pen
plotters. DISK $84.95

DEALER INQUIRIES ARE INVITED

for multiple graphics screens, screen copy, elc.
DISK $59.95

TAS-64 FOR SERIOUS INVESTORS

This sophisticated charting system plots more than 15 technical indicators
on split screen. moving averages; oscillators; trading brands; least squares.
trend hines. supenmpose graphs; five volume indicators; relative strength;
volumes. more. Online data collectton DJNR/S or Warner. 175pp. manual.
Tutonal. DISK $84.95

FREECATALOG Ask for a listing of other
Abacus Software for Commodore-64 or Vic-20
DISTRIBUTORS

Ssiortan: Bagoin: e aion Vetoml hestaoucs
AL, B Rrd s 2 P o
06524304 26601447 17328254 63-66-658

DAt st T home o ot

Morowigesy 20 20 818 418 Logan Road

0211312085 47612304 3970808

‘Commodore 64 is a reg. T.M. of Commodore Business Machines

AVAILABLE AT COMPUTER STORES, OR WRITE:

P.0. BOX 7211 GRAND RAPIDS. MICH. 48510 E

e E T
monay order (R
or ebarne card. m"w Residents add 4% sales lax), (]

FOR QUICK SERVICE PHONE 616-241-5510

i
/
]

FOR COMMODORE-64

HACKERS ONLY!

HOAWQLYNY

1108 HQ 19

W8 SHTINIDAI ANV SISTI

OTHER BOOKS AVAILABLE SOON

THL HOJ STHQI R

19 - AHOGOWINOD THL HO HOOH

BE. £9-JHOGOWIWOD THLL HOJ AVNONYT INHHWW

The ultimate source
for Commodore-64
Computer information

THE ANATOMY OF THE C-64
1S the insider’s guide to the lesser known features of
the Commodore 64 Includes chapters on graphics.
sound synthests. input/output control. sample programs
using the kernal routines. more For those who need to
know. it mcludes the complete disassembled and
documented ROM listings
ISBN-0-916439-00-3

THE ANATOMY OF THE 1541
DISK DRIVE
unravels the mystenes of using the misunderstood disk
dnve Delai's the use of program sequential, relative
and direct access files Include many sample programs
FILE PROTECT. DIRECTORY. DISK MONITUR. BACKUP.
MERGE. COPY. others Descnbes mternats of DOS with
[+ histings of the

300pp $19.95

1541 ROMS

ISBN-0-916439-01-1 320pp $19.95

GRAPHICS BOOK FOR

THE C-64

takes you from the fundamentals of graphic 1o
advanced 10pics such as computer aided design Shows
you how to program new character sets. move spntes.
draw 0 HIRES and MULTICOLOR. use a hghtpen,
handle IROs. do 30 graphics. projections. curves and
ammation Includes dozens of samples

ISBN-0-916439-05-4 280pp $19.95

ADVANCED MACHINE
LANGUAGE FOR THE C-64

qives you an intensive treatment of the powerful ‘64
tedtures Author Lothar Englisch delves into areas such
as iterrupts. the video controller. the timer. the real
time clock parallel and serial I/0. extending BASIC and
tips ang tricks from machine language. more

ISBN-0-916439-06-2 200pp $14.95

SCIENCE/ENGINEERING

ON THE C-64

1s an introduction 10 the world of computers in science
Describes variable types. computational accuracy.
vanous sort alognthms. Topics nclude hnear and
nonhinear regression. CHI-square distribution. Fourier
analysis. malnx calculations. more Programs from
chemustry. physics. biology. astronomy and efectronics
Includes many program listings

ISBN-0-916439-09-7 250pp $19.95

CASSETTE BOOK FOR THE C-64
(or Vic 20) contans all the information you need 1o
know about using and programming the Commodore
Datasette Includes many example programs Also con-
lans a new operaling system for fast loading. saving
and finding of files

ISBN-0-916439-04-6

180pp. $12.95

MACHINE LANGUAGE FOR C-64
1s aimed at those who want 10 progress beyond BASIC
Write faster. more memory efftcient programs in machine
language Test s specitically geared to Commadore 64
Leamns all 6510 mstructions Includes histings for 3 full
tength programs ASSEMBLER. DISASSEMBLER and
amauing 6510 SIMULATOR so you can “see’ the opera
tton of the ‘64

ISBN-0-916439-02-X

TRICKS & TIPS FOR THE C-64
15 a collection of easy-l0-use programiming techniques for
the ‘64 A perfect companion for those who have run
up aganst those hard to solve programming problems
Covers advanced graphics. easy data inpul, BASIC
enhancements. CP/M cartridge on the '64. POKES. user

200pp $14.95

IDEAS FOR USE ON YOUR C-64
is for those who wonder what you can do with your '64
It 1s wniten for the novice and presents dozens of
program hsting the many. many uses for your
computer Themes include auto expenses, electronic

DEALER INQUIRIES ARE INVITED

IN CANADA CONTACT:
The Book Centre, 1140 Beaulac Street
Montreal, Qusbec H4R1R8 Phone: (514) 322-4154

calculator. recipe file. stock bsts. cost
esthimalor. persona! health record diet planner. store
window advertising, computer poetry. party invitations
and more

ISBN-0-916439-07-0 $12.95
PRINTER BOOK FOR THE C-64
finally simphties your understanding of the 1525.
MPS/801, 1520, 1526 and Epson compatible printers.
Packed with examples and utihty programs. you'll learn
how to make hardcopy of text and graphics, use secon-
dary plot n 3-D. and much more. Includes

200pp

defined characler sels frans-
fernng data between comuters. more A treasure chest
ISBN-0-916439-03-8 250pp $19.95

commented hsting of MPS 801 ROMs

ISBN-0-916439-08-9 350pp. $19.95

AVAILABLE AT COMPUTER STORES, OR WRITE:

us fii
P.0. BOX 7211 GRAND RAPIDS, MI 49510
Exclusive U.8. DATA BECKER Pubiishers
For postage & handiing, add $4.00 (U.S. and EEEAN
Canada), add $6.00 for foreign. Make paymen! pupemmy’
in U.S. dollars by check, money order of
charge card. (Michigan Residents add 4%
sales tax.)
FOR QUICK SERVICE PHONE (618) 241-5510
isarg. TM.of iness Machines

THE MACHINE

LANGUAGE BOOK
OF THE

COMMODORE 64

This introductory guide to machine language programing
is written specifically for the Commodore 64 owner. You'll
learn: to use all of the 6510 instructions; to program
high resolution graphics; to perform input and output
operations and more with plenty of easy-to-understand
examples.

Included are listings for a working ASSEMBLER, DIS-
ASSEMEBELER and 6510 Single Step Simulator.

ISEN D-91k439-02-X

arrg ke G e

CUS [l
Software

P.0. BOX 7211 GRAND RAPIDS, MICH. 49510 PHONE 616-241-5510

	Binder1.pdf
	2009_01_01_00_20_19_Page_1.jpg
	2009_01_01_00_20_19_Page_2.jpg

